数論的基本群と構成的ガロア理論
算术基本群和构造性伽罗瓦理论
基本信息
- 批准号:11740016
- 负责人:
- 金额:$ 1.15万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Encouragement of Young Scientists (A)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
まず、研究目的「正標数の体の上の代数曲線の数論的基本群の構造、特に幾何的基本群の構造」については、以前、正標数代数閉体の上の代数曲線において、種数がtame基本群から群論的に復元されることを証明したが、その内容は、種数をある種の巡回被覆のp-rankの平均の極限として表す公式だった。今年度は、その際懸案となっていたより一般の極限公式のうちの「半分」(上極限【less than or equal】種数)を、一様分布論におけるLeVequeの定理の高次元版(Stegbuchnerの定理)を用いて証明することができた(論文投稿中)。また、研究目的「正標数の体の上の代数曲線の数論的基本群の構造」「局所体の上の代数曲線の数論的基本群の構造」に関して、PopとSaidiにより、正標数局所体の上の完備双曲的代数曲線の基本群のspecialization mapの非同型性及び正標数代数閉体上の完備双曲的代数曲線に関する弱いGrothendieck型予想(同型な基本群を持つ曲線の同型類の有限性)の成立が、いくつかの比較的強い条件の下で証明されていたが、今年度、曲線の詳しい代数幾何(一般化されたPrym多様体に対する局所Torelli問題、曲線の被覆のgonalityの評価、など)を通じてそれらの条件を外すことに成功し、一般的な定理を得た(論文執筆予定)。なお、この結果は、研究実施計画の中の惰性群の作用の記述とも密接に関係する。来年度以降はこの方向の研究を更に進めたい。更に、ごく最近、曲線のJacobi多様体と同種にならないようなアーベル多様体の存在に関するOortの問題について、曲線とアーベル多様体のモジュライ空間の幾何を通じてある肯定的結果を得た。現時点では数論的基本群との直接的関係はまだ現れていないが、今後、基本群の上のGalois表現やモジュライ空間の幾何を介して両者の関係が現れることがじゅうぶん期待される。これは、来年度以降の課題である。
首先,关于研究目标,“代数曲线的数值基本曲线的结构在积极迹象领域,尤其是几何基本群体”,我们先前以前证明,物种数量是基于组理论的基于群体曲线的基于积极符号封闭的代数曲线,但是内容是一个物种数字,将物种数字描述为某些平均p-canc cyc cyc cyc cyc cyc cyc cyc cyc cyc cyc cyc cycc cyc的平均限制的限制。今年,我们能够使用当时关注的更一般极限公式的“一半”(小于或相等)的“一半”(使用统一分布理论(Stegbuchner's Therorem)的较高维度的定理(论文提交)。 Furthermore, regarding the research objectives "Structure of the number-theoretical fundamental group of algebra curves above the positive-denominal field" and "Structure of the number-theoretical fundamental group of algebra curves above the local field", Pop and Saidi proved that the establishment of the weak Grothendieck type prediction (finiteness of the isomorphism of the algebra curves above the positive-denominal local field (finiteity of代数曲线的同构曲线的同构曲线的同构曲线在正数局部领域上方)对完全跨元素曲线的正态局部界面上的异端性曲线对正数局部局部域(曲线的同构的有限性),但在几个相对较强的情况下,我们将这些条件取得了详细的态度,但在这些条件下,我们的地理均可证明了这些条件的详细范围。 (用于广义prym歧管的本地托雷利问题,曲线覆盖率的评估等),并获得了一般定理(待编写的论文)。此外,该结果与惯性组在研究实施计划中的影响密切相关。我们想从明年开始继续朝这个方向进行研究。此外,最近,我们通过对Oort问题的弯曲和亚伯歧管的模量空间的几何形状获得了一些积极的结果,而ABEL歧管的存在与弯曲线的Jacobi歧管没有均匀。在这一点上,尚未与数值理论基本群体建立直接关系,但是非常希望,两者之间的关系将在将来通过高于基本群体的Galois代表和模量空间的几何形状出现。这是明年及以后的问题。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Akio Tamagawa: "Ramification of torsion points on curver with ordinary semi-stable Jacobian varieties"Duke Mathematical Journal. (to appear).
玉川昭夫:“普通半稳定雅可比簇的曲线上扭点的分支”杜克数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Makoto.Matsumoto and Akio Tamagawa: "Mapping-class-group action versus Galois action on profinite fundamental groups"American Journal of Mathematics. 122. 1017-1026 (2000)
Makoto.Matsumoto 和 Akio Tamakawa:“映射类群作用与有限基本群上的伽罗瓦作用”美国数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Akio Tamagawa: "On the fundamental groups of curves over algebraically closed fields of characteristic>0"International Mathematics Research Notices. No,16. 853-873 (1999)
玉川昭夫:“关于特征代数闭域上曲线的基本群>0”国际数学研究通报。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Akio Tamagawa: "Ramification of torsion points on curves with ordinary semi-stable Jacobian varieties"Duke Mathematical Journal. 106,No.2. 281-319 (2001)
玉川昭夫:“普通半稳定雅可比簇的曲线上的扭转点的分支”杜克数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Akio.Tamagawa: "On the fundamental groups of curves over algebraically closed fields of characteristic>0"International Mathematics Research Notices. No.16. 853-873 (1999)
玉川昭夫:“关于特征>0的代数闭域上曲线的基本群”国际数学研究通报。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
玉川 安騎男其他文献
Spherical designs attached to extremal lattices and some related problems of modular forms
极值格子的球形设计及模形式的一些相关问题
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
S.;Mukai;坂内 英一;玉川 安騎男;坂内 英一;川北真之;Michio Ozeki;小木曽啓示;Masaaki Harada;小木曽啓示;Eiichi Bannai - 通讯作者:
Eiichi Bannai
On non-algebraic hyperkahler manifolds
关于非代数超卡勒流形
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
S.;Mukai;坂内 英一;玉川 安騎男;坂内 英一;川北真之;Michio Ozeki;小木曽啓示;Masaaki Harada;小木曽啓示 - 通讯作者:
小木曽啓示
Mordell-Weil group of an abelian fibered variety and its application to hyperkahler manifolds
阿贝尔纤维簇的 Mordell-Weil 群及其在超卡勒流形中的应用
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
S.;Mukai;坂内 英一;玉川 安騎男;坂内 英一;川北真之;Michio Ozeki;小木曽啓示;Masaaki Harada;小木曽啓示;Eiichi Bannai;小木曽啓示 - 通讯作者:
小木曽啓示
Survey on inversion of adjunction
附加语倒置调查
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
S.;Mukai;坂内 英一;玉川 安騎男;坂内 英一;川北真之 - 通讯作者:
川北真之
The algebraic and anabelian geometry of configuration spaces (joint work with Shinichi Mochizuki)
配置空间的代数和阿贝尔几何(与望月新一合作)
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Anna Cadoret;Akio Tamagawa;Akio Tamagawa;Akio Tamagawa;玉川安騎男;玉川安騎男;玉川 安騎男;Akio Tamagawa;Akio Tamagawa;Akio Tamagawa;Akio Tamagawa - 通讯作者:
Akio Tamagawa
玉川 安騎男的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('玉川 安騎男', 18)}}的其他基金
数論的基本群に関する数論幾何学の高次元化
关于算术基本群的算术几何的高维
- 批准号:
23K20207 - 财政年份:2024
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Moduli stacks: curves, stable reduction and arithmetic
模数堆栈:曲线、稳定归约和算术
- 批准号:
22KF0205 - 财政年份:2023
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Higher-dimensionalization of arithmetic geometry concerning arithmetic fundamental groups
关于算术基本群的算术几何的高维化
- 批准号:
20H01796 - 财政年份:2020
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
モジュラータワー予想とフルヴィッツ空間の幾何
模块化塔猜想与赫尔维茨空间几何
- 批准号:
06F06033 - 财政年份:2006
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
正標数代数曲線の被覆に関連する数論幾何学とその応用
算术几何及其与正特征代数曲线覆盖相关的应用
- 批准号:
15740009 - 财政年份:2003
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
代数曲線の数論的基本群と逆ガロア問題
代数曲线的算术基本群与伽罗瓦反问题
- 批准号:
13740009 - 财政年份:2001
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
正標数代数多様体の基本群の数論幾何学的研究
正特征代数簇基本群的算术几何研究
- 批准号:
09740019 - 财政年份:1997
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
有限体、局所体、及び大域体の上に定義された代数多様体とその基本群の数論幾何的研究
有限域、局部域和全局域上定义的代数簇及其基本群的算术几何研究
- 批准号:
08740019 - 财政年份:1996
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
相似海外基金
有限群スキームに対する有理性問題
有限群方案的有理性问题
- 批准号:
21K20334 - 财政年份:2021
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
代数曲線の族に付随する基本群スキームの比較準同型の研究とその応用
代数曲线族基本群格式的比较同态研究及其应用
- 批准号:
19J00366 - 财政年份:2019
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
正標数代数曲線の同型類の幾何的基本群による復元
用几何基本群恢复正特征代数曲线的同构类
- 批准号:
18J13541 - 财政年份:2018
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Various problems in arithmetic geometry concerning arithmetic fundamental groups and their interrelationships
算术几何中有关算术基本群及其相互关系的各种问题
- 批准号:
15H03609 - 财政年份:2015
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)