ウェブ図の代数的研究

网络图的代数研究

基本信息

项目摘要

本年は京都大学数理解析研究所でプロジェクト「21世紀の低次元トポロジー」が行われ,組織委員の一人として参加した。テーマの一つとして量子不変量があげられており,内外の多数の研究者が集まって活発に交流が行われ,本研究にも多大の貢献があった。本年の成果をまとめると次のようになる。1.代数的側面についてプロジェクト「21世紀の低次元トポロジー」に参加したD.Thurstonは,ウェブ図のなす代数系に対して「微分」(derivation)を導入し,自明な結び目に対応する元についての非常に基本的な表記法を得た。また,これに附随してこの代数の二種類の積構造から定義される二種類の環構造についての同型対応を構成した。これについて京都大学数理解析研究所での短期共同研究「多重ゼータ値の諸相」で紹介し,その際に,多重ゼータ値の研究でのシャッフル積と調和積の間の関係と対応することが明かとなった。これを受け,多重ゼータ値の理論との関係について研究を開始した。また,「21世紀の低次元トポロジー」の参加者とウェブ図のなす代数系の呼称について話し合い,今後はヤコビ(Jacobi)図と呼ぶことで合意した。2.幾何的側面についてウェブ図と深く関係する量子不変量に対し,「体積予想」と呼ばれる問題がある。これは双曲構造が入る3次元多様体に対し,その体積が量子不変量からある方法で決まるのではないかという予想である。量子不変量には様々な側面があるが,量子6j-記号と呼ばれるものに注目し,体積予想から推察して双曲四面体の体積が量子6j-記号から得られると考え,研究を進めた結果,双曲四面体の体積を表す新たな公式を得た。
今年,“21世纪的低维拓扑”项目在京都大学数学科学研究所举行,我作为组委会成员之一参加了。量子不变量作为主题之一提出,国内外众多研究人员齐聚一堂,积极互动,为这项研究做出了巨大贡献。今年的成果可总结如下。 1.关于代数方面 D.Thurston参与了“21世纪的低维拓扑”项目,将“推导”引入到由Web图形成的代数系统中,并研究了与琐碎结相对应的元素我得到了 的一个非常基本的符号。此外,我们还为根据该代数的两种类型的乘积结构定义的两种类型的环结构构建了同构对应关系。我们在京都大学数学科学研究所的“多zeta值的方面”的短期合作研究中引入了这一点,当时清楚地表明它对应于随机乘积和调和乘积之间的关系。对多个 zeta 值的研究成为了一件事情。针对这一点,我们开始研究与多重zeta值理论的关系。我们还与“21世纪低维拓扑”的参与者讨论了Web图创建的代数系统的名称,并同意从现在起将其称为雅可比图。 2. 关于几何方面,有一个关于与Web图密切相关的量子不变量的“体积猜想”问题。这是一个猜想,对于包含双曲结构的三维流形,其体积由量子不变量以某种方式确定。虽然量子不变量有很多方面,但我们关注的是所谓的量子 6j 符号,并通过体积猜想推断双曲四面体的体积可以从量子 6j 符号 As 获得,从而继续我们的研究。结果,我们得到了一个新的公式来表达双曲四面体的体积。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
村上順: "結び目と量子群"朝倉書店. 180 (2000)
村上淳:《结与量子群》朝仓书店 180 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Murakami,J.Murakami: "The colored Jones polynomials and the simplicial volume of a knot"Acta Mathematica. (発表予定).
H.Murakami,J.Murakami:“有色琼斯多项式和结的单纯体积”数学学报(待提交)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Thang T.Q.Le 他: "A three-manifold invariant via Kontsevich integral"Osaka Journal of Mathematics. 36・2. 365-396 (1999)
Thang T.Q.Le 等:“通过 Kontsevich 积分的三流形不变量”Osaka Journal of Mathematics 36・2 (1999)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Murakami, J.Murakami: "The colored Jones polynomials and the simplicial volume of a knot"Acta Mathematica. 186. 85-104 (2001)
H.Murakami,J.Murakami:“有色琼斯多项式和结的单纯体积”数学学报。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
大槻知忠 他: "量子不変量:3次元トボロジーと数理物理の遭遇"日本評論社. 152 (1999)
Tomotada Otsuki 等人:“量子不变量:三维拓扑学与数学物理学之间的相遇”Nippon Hyoronsha 152 (1999)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

村上 順其他文献

On quantum character varieties of knots
关于结的量子特征变种
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Collins;Beno\^{i}t and Hayase;Tomohiro;村上 順
  • 通讯作者:
    村上 順
体積ポテンシャル関数とその応用
体积势函数及其应用
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kawamoto;Y. ; Osada;H.;Tanemura H.;国里愛彦・竹林由武;中田光紀;村上 順
  • 通讯作者:
    村上 順
The 3D MHD effects for a CoreCollapse Supernova Explosion, Workshop
CoreCollapse 超新星爆炸的 3D MHD 效果,研讨会
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Murakami;Jun;水田晃;下村 俊;Jun Murakami;松本倫明;Shunsuke Morosawa;松本倫明;Jun Murakami and Kiyokazu Nagatomo;Kazuya Tohge;村上順;三上隼人;Seiki Mori;村上順;三上隼人;村上順;Akira Mizuta;村上順;H. Mikami;村上 順;Hayato Mikami;村上順;H. Mikami
  • 通讯作者:
    H. Mikami
先生たちのリフレクション
教师感言
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Collins;Beno\^{i}t and Hayase;Tomohiro;村上 順;千々布敏弥
  • 通讯作者:
    千々布敏弥
On the variations of quantum sl2 invariants of knots and links
关于结和链的量子 sl2 不变量的变化
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Murakami;Jun;水田晃;下村 俊;Jun Murakami;松本倫明;Shunsuke Morosawa;松本倫明;Jun Murakami and Kiyokazu Nagatomo;Kazuya Tohge;村上順;三上隼人;Seiki Mori;村上順;三上隼人;村上順;Akira Mizuta;村上順;H. Mikami;村上 順;Hayato Mikami;村上順
  • 通讯作者:
    村上順

村上 順的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('村上 順', 18)}}的其他基金

量子不変量から見た3次元多様体の幾何構造の研究
量子不变量视角下三维流形几何结构研究
  • 批准号:
    23K20214
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research on a complexification of hyperbolic tetrahedra
双曲四面体的复化研究
  • 批准号:
    20K20881
  • 财政年份:
    2020
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Study of the geometric structure of three manifolds by using quantum invariants
利用量子不变量研究三流形的几何结构
  • 批准号:
    20H01803
  • 财政年份:
    2020
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Diagramatic construction of non-semisimple TQFT
非半简单 TQFT 的图解构造
  • 批准号:
    19F19765
  • 财政年份:
    2019
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
結び目の体積予想の研究
结体积预测研究
  • 批准号:
    09F09221
  • 财政年份:
    2009
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
表現論における新手法の研究
表示论新方法研究
  • 批准号:
    09874009
  • 财政年份:
    1997
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
ファインマン図を用いた幾何や数理物理の新しい手法とその応用
使用费曼图的几何和数学物理新方法及其应用
  • 批准号:
    08874002
  • 财政年份:
    1996
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
結び目や3次元多様体の表現論的な手法を用いた分類
使用表征方法对结和 3D 流形进行分类
  • 批准号:
    07210250
  • 财政年份:
    1995
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
ブレイド群の表現論
叶片群表示论
  • 批准号:
    06640044
  • 财政年份:
    1994
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
表現論的方法による結び目の分類問題
使用表征方法的结分类问题
  • 批准号:
    01740040
  • 财政年份:
    1989
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

二次特性類と多重対数関数の幾何
多对数函数的二次性质和几何
  • 批准号:
    21K03240
  • 财政年份:
    2021
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
単体分割を用いた結び目と枠付き3次元多様体の量子不変量の研究
使用单纯分解研究结和框架三维流形的量子不变量
  • 批准号:
    19K14523
  • 财政年份:
    2019
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Geometry of secondary characteristic classes
次要特征类的几何
  • 批准号:
    17K05243
  • 财政年份:
    2017
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Asymptotic behaviors of quantum invariants of knots and three-manifolds
结和三流形的量子不变量的渐近行为
  • 批准号:
    17K05239
  • 财政年份:
    2017
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantum Topology of knots and 3-manifolds
结和三流形的量子拓扑
  • 批准号:
    16H02145
  • 财政年份:
    2016
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了