画像処理における2次元曲線の変形の効率化と等角接合による認証
使用共形连接进行图像处理和身份验证中二维曲线变形的效率
基本信息
- 批准号:23K17656
- 负责人:
- 金额:$ 2.41万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Challenging Research (Exploratory)
- 财政年份:2023
- 资助国家:日本
- 起止时间:2023-06-30 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
松崎 克彦其他文献
松崎 克彦的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('松崎 克彦', 18)}}的其他基金
レブナー方程式とタイヒミュラー空間論
Lobner 方程和 Teichmuller 空间理论
- 批准号:
23K25775 - 财政年份:2024
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Loewner equation and Teichmueller space theory
Loewner 方程和 Teichmueller 空间理论
- 批准号:
23H01078 - 财政年份:2023
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Theory of the universal Teichmüller space in harmonic analysis
普遍理论
- 批准号:
21F20027 - 财政年份:2021
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Quasiconformal extension in differential geometry and theory of the universal Teichmueller space in harmonic analysis
微分几何中的拟共形扩张和调和分析中的通用 Teichmueller 空间理论
- 批准号:
18H01125 - 财政年份:2018
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
熱力学形式によるクライン群の幾何の研究
热力学形式克莱因群几何形状的研究
- 批准号:
14F04321 - 财政年份:2014
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for JSPS Fellows
複素力学系の群論への応用:Burnside問題とHopf問題
复杂动力系统在群论中的应用:Burnside 问题和 Hopf 问题
- 批准号:
20654016 - 财政年份:2008
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
リーマン面上の射影構造の離散的ホロノミー表現の研究
黎曼曲面上射影结构的离散完整表示研究
- 批准号:
12740084 - 财政年份:2000
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
クライン群と複素力学系の研究
克莱因群和复杂动力系统的研究
- 批准号:
08740090 - 财政年份:1996
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
双曲的多様体の剛性と離散群のエルゴード性の研究
双曲流形的刚度和离散群的遍历性研究
- 批准号:
06854004 - 财政年份:1994
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
双曲的三次元多様体とクライン群
双曲三维流形和克莱因群
- 批准号:
05740085 - 财政年份:1993
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
相似海外基金
Construction of constant mean curvature surfaces via loop groups and Lorentz geometry
通过环群和洛伦兹几何构造恒定平均曲率曲面
- 批准号:
23K03081 - 财政年份:2023
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Inverse problems for hyperbolic partial differential equations on Lorentzian manifolds
洛伦兹流形上双曲偏微分方程的反问题
- 批准号:
20J11497 - 财政年份:2020
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for JSPS Fellows
タイヒミュラー空間論の複素解析的側面の深化と多角的視点からの新展開
深化Teichmuller空间理论的复杂分析以及多视角的新发展
- 批准号:
20H01800 - 财政年份:2020
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometry of optimal transport theory and gradient flows
最优输运理论和梯度流的几何
- 批准号:
19H01786 - 财政年份:2019
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometric structures which admits singular points and the realization problem
承认奇点的几何结构及其实现问题
- 批准号:
16K17605 - 财政年份:2016
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Young Scientists (B)