Loewner equation and Teichmueller space theory
Loewner 方程和 Teichmueller 空间理论
基本信息
- 批准号:23H01078
- 负责人:
- 金额:$ 11.15万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2023
- 资助国家:日本
- 起止时间:2023-04-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
松崎 克彦其他文献
松崎 克彦的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('松崎 克彦', 18)}}的其他基金
レブナー方程式とタイヒミュラー空間論
Lobner 方程和 Teichmuller 空间理论
- 批准号:
23K25775 - 财政年份:2024
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
画像処理における2次元曲線の変形の効率化と等角接合による認証
使用共形连接进行图像处理和身份验证中二维曲线变形的效率
- 批准号:
23K17656 - 财政年份:2023
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Theory of the universal Teichmüller space in harmonic analysis
普遍理论
- 批准号:
21F20027 - 财政年份:2021
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Quasiconformal extension in differential geometry and theory of the universal Teichmueller space in harmonic analysis
微分几何中的拟共形扩张和调和分析中的通用 Teichmueller 空间理论
- 批准号:
18H01125 - 财政年份:2018
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
熱力学形式によるクライン群の幾何の研究
热力学形式克莱因群几何形状的研究
- 批准号:
14F04321 - 财政年份:2014
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
複素力学系の群論への応用:Burnside問題とHopf問題
复杂动力系统在群论中的应用:Burnside 问题和 Hopf 问题
- 批准号:
20654016 - 财政年份:2008
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
リーマン面上の射影構造の離散的ホロノミー表現の研究
黎曼曲面上射影结构的离散完整表示研究
- 批准号:
12740084 - 财政年份:2000
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
クライン群と複素力学系の研究
克莱因群和复杂动力系统的研究
- 批准号:
08740090 - 财政年份:1996
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
双曲的多様体の剛性と離散群のエルゴード性の研究
双曲流形的刚度和离散群的遍历性研究
- 批准号:
06854004 - 财政年份:1994
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
双曲的三次元多様体とクライン群
双曲三维流形和克莱因群
- 批准号:
05740085 - 财政年份:1993
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
相似海外基金
Quasiconformal extension in differential geometry and theory of the universal Teichmueller space in harmonic analysis
微分几何中的拟共形扩张和调和分析中的通用 Teichmueller 空间理论
- 批准号:
18H01125 - 财政年份:2018
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
リーマン球面からグラスマン多様体への正則等長写像の研究
黎曼球面到格拉斯曼流形的全纯等距映射研究
- 批准号:
18K13411 - 财政年份:2018
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Non-commutative harmonic analysis on solvable Lie groups and its applications
可解李群的非交换调和分析及其应用
- 批准号:
17K05280 - 财政年份:2017
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on complex analytical structure on Teichmuller space
Teichmuller空间复杂解析结构研究
- 批准号:
16K05202 - 财政年份:2016
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on variations of invariants and reproducing kernels on Riemann surfaces under pseudoconvexity
赝凸下黎曼曲面不变量变化及再生核研究
- 批准号:
15K04914 - 财政年份:2015
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)