Dual-slope method for enhanced depth sensitivity in frequency-domain near-infrared spectroscopy
用于增强频域近红外光谱深度灵敏度的双斜率方法
基本信息
- 批准号:10210759
- 负责人:
- 金额:$ 57.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:Arachnoid materBiologicalBiomedical EngineeringBlood VesselsBlood VolumeBlood flowBrainBrain imagingBreastCerebrumClinicalCognitiveCollectionComplexDataDevelopmentDevicesDiagnosticDiffuseDiffusionDura MaterEffectivenessFatty acid glycerol estersFiberFrequenciesFunctional ImagingGenerationsGeometryHumanImageLasersLightMammary Gland ParenchymaMammographyMeasurementMeasuresMethodsMonitorMonte Carlo MethodMorphologic artifactsMotionMuscleNear-Infrared SpectroscopyNoiseOpticsOxygen ConsumptionOxygen saturation measurementPathologyPerformancePhasePlayPrefrontal CortexPropertyResearchResearch Project GrantsRoleScalp structureSchemeSignal TransductionSiliconSkeletal MuscleSkinSourceSpecificitySpectrum AnalysisStrokeSubarachnoid SpaceSurfaceSystemTechniquesTechnologyTelemetryTestingTheoretical StudiesTimeTissuesWalkingWireless TechnologyYangbasebrain tissuecerebral hemodynamicscerebral oxygenationclinical applicationcognitive taskcognitive testingcomputerized data processingcostcost effectivecraniumdesigndetectordiffuse optical spectroscopy and imagingflexibilityhemodynamicshuman subjectimprovedin vivoinstrumentinstrumentationmicrochipmicrosystemsneurovascularnovelnovel strategiesperformance testspoint of carepoint-of-care diagnosticssignal processingsimulationsolid statesubcutaneoustheoriestoolwearable devicewireless communication
项目摘要
PROJECT SUMMARY
In this Bioengineering Research project, we propose to develop a novel technique for frequency-domain near-
infrared spectroscopy (FD-NIRS) that aims to achieve selective sensitivity to deeper tissue in non-invasive
diffuse optical spectroscopy and imaging. A technique that features a stronger sensitivity to deeper tissue
relative to superficial tissue can have a broad impact on non-invasive optical diagnostics and monitoring and is
especially important in cerebral oximetry and functional brain imaging. The proposed technique is based on the
new concept of phase dual-slopes (this is the phase of the modulated optical signal measured in FD-NIRS),
which requires a minimum of two light sources and two optical detectors placed on the tissue according to a
special arrangement. In addition to achieving selective sensitivity to deeper tissue, phase dual slopes are
weakly sensitive to instrumental drifts and motion artifacts (except spikes), which is a highly desirable property
for robust measurements. First, we will use diffusion theory and Monte Carlo simulations to identify
source/detector geometrical arrangements and intensity modulation frequencies that optimize performance of
the phase dual-slope for a variety of heterogeneous layered media. Second, we will implement optimal phase
dual-slope conditions with a commercial FD-NIRS instrument to demonstrate effectiveness on tissue-like
phantoms, and we will design special source-detector arrays for imaging based on the Moore-Penrose
pseudoinverse of the Jacobian matrix for phase dual-slope measurements. Third, we will design and build a
dedicated compact, wearable, fiber-less, and cost-effective FD-NIRS device for further broadening the
applicability of the phase dual-slope method to freely moving subjects in everyday conditions, and for point-of-
care applications. Fourth, we will perform human studies for technical performance tests (in skeletal muscle
during vascular occlusions) and to demonstrate the effectiveness of the phase dual-slope method for functional
brain imaging (in the prefrontal cortex during cognitive activation). In particular, the latter study will elucidate
the relative blood flow/blood volume contributions to cortical hemodynamics and will allow for dual-task
measurements in subjects performing cognitive tasks while walking. The broad objective of this project is to
advance the field of diffuse optical measurements of biological tissue by developing special techniques for
collection and analysis of FD-NIRS data to enhance the quality, reliability, and information content of non-
invasive NIRS in research and clinical applications.
项目摘要
在这个生物工程研究项目中,我们建议开发一种新型技术,以实现接近频率域
红外光谱(FD-NIR)旨在实现对非侵入性组织的选择性敏感性
弥漫性光谱和成像。一种对更深层组织敏感性更强的技术
相对于浅表组织,可以对非侵入性光学诊断和监测产生广泛的影响,并且
在脑血氧仪和功能性脑成像中尤为重要。提出的技术基于
相思双斜坡的新概念(这是在FD-NIRS中测得的调制光信号的相),
这需要至少两个光源和两个光学探测器,根据
特殊安排。除了实现对更深层组织的选择性敏感性外,相思双斜率还
对工具漂移和运动伪影(钉)敏感较弱(钉),这是一种非常可取的特性
用于健壮的测量。首先,我们将使用扩散理论和蒙特卡洛模拟来识别
来源/检测器的几何布置和强度调制频率优化的性能
各种异质分层介质的相位双斜率。其次,我们将实施最佳阶段
带有商业FD-NIRS仪器的双斜率条件,可证明对组织样的有效性
幻影,我们将设计特殊的源检测器阵列,用于基于摩尔 - 芬罗
雅可比矩阵的伪型测量值。第三,我们将设计和建造
专用紧凑,可穿戴,无光纤和经济高效的FD-NIRS设备,以进一步扩大
相思双斜率方法适用于在日常条件下自由移动受试者的适用性,并适用于
护理应用。第四,我们将进行人类研究以进行技术性能测试(骨骼肌肉
在血管闭塞期间),并证明了功能性双斜率方法的有效性
脑成像(认知激活期间的前额叶皮层中)。特别是,后一项研究将阐明
相对血流/血量对皮质血流动力学的贡献,将允许双重任务
步行时执行认知任务的受试者的测量。该项目的广泛目标是
通过开发特殊技术来推进生物组织的弥散光学测量领域
FD-NIRS数据的收集和分析,以增强非 - 的质量,可靠性和信息内容
研究和临床应用中的侵入性NIR。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SERGIO FANTINI其他文献
SERGIO FANTINI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SERGIO FANTINI', 18)}}的其他基金
Dual-slope method for enhanced depth sensitivity in frequency-domain near-infrared spectroscopy
用于增强频域近红外光谱深度灵敏度的双斜率方法
- 批准号:
10457966 - 财政年份:2021
- 资助金额:
$ 57.16万 - 项目类别:
Dual-slope method for enhanced depth sensitivity in frequency-domain near-infrared spectroscopy
用于增强频域近红外光谱深度灵敏度的双斜率方法
- 批准号:
10624381 - 财政年份:2021
- 资助金额:
$ 57.16万 - 项目类别:
Coherent hemodynamics spectroscopy for cerebral autoregulation and blood flow
用于脑自动调节和血流的相干血流动力学光谱
- 批准号:
9921500 - 财政年份:2016
- 资助金额:
$ 57.16万 - 项目类别:
Non-invasive optical detection of cerebral hemodynamics and metabolic transients
脑血流动力学和代谢瞬态的无创光学检测
- 批准号:
9185520 - 财政年份:2016
- 资助金额:
$ 57.16万 - 项目类别:
Near-infrared spectral imaging of the breast for cancer detection and monitoring
用于癌症检测和监测的乳腺近红外光谱成像
- 批准号:
8461711 - 财政年份:2011
- 资助金额:
$ 57.16万 - 项目类别:
Near-infrared spectral imaging of the breast for cancer detection and monitoring
用于癌症检测和监测的乳腺近红外光谱成像
- 批准号:
8848348 - 财政年份:2011
- 资助金额:
$ 57.16万 - 项目类别:
Near-infrared spectral imaging of the breast for cancer detection and monitoring
用于癌症检测和监测的乳腺近红外光谱成像
- 批准号:
8191273 - 财政年份:2011
- 资助金额:
$ 57.16万 - 项目类别:
Near-infrared spectral imaging of the breast for cancer detection and monitoring
用于癌症检测和监测的乳腺近红外光谱成像
- 批准号:
8300116 - 财政年份:2011
- 资助金额:
$ 57.16万 - 项目类别:
相似国自然基金
基于稀疏表示模型和先验结构信息的低剂量PET/MRI成像研究
- 批准号:81871441
- 批准年份:2018
- 资助金额:58.0 万元
- 项目类别:面上项目
基于多级弹簧腿系统的外骨骼下肢康复机器人协动原理研究
- 批准号:51505191
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
结合DNA杂交编码的受体和细胞微阵列仿生味觉传感器的研究
- 批准号:31470956
- 批准年份:2014
- 资助金额:80.0 万元
- 项目类别:面上项目
ECoG,EEG-fMRI多模态癫痫监测与病灶定位研究
- 批准号:81471743
- 批准年份:2014
- 资助金额:73.0 万元
- 项目类别:面上项目
FGFR特异性核酸适体的筛选及在分子标记和靶向药物载体中的应用
- 批准号:81471773
- 批准年份:2014
- 资助金额:73.0 万元
- 项目类别:面上项目
相似海外基金
Assessing CSF flow dynamics in pediatric hemorrhagic hydrocephalus
评估小儿出血性脑积水的脑脊液流动动力学
- 批准号:
10591523 - 财政年份:2022
- 资助金额:
$ 57.16万 - 项目类别:
Assessing CSF flow dynamics in pediatric hemorrhagic hydrocephalus
评估小儿出血性脑积水的脑脊液流动动力学
- 批准号:
10420486 - 财政年份:2022
- 资助金额:
$ 57.16万 - 项目类别:
Dual-slope method for enhanced depth sensitivity in frequency-domain near-infrared spectroscopy
用于增强频域近红外光谱深度灵敏度的双斜率方法
- 批准号:
10457966 - 财政年份:2021
- 资助金额:
$ 57.16万 - 项目类别:
Dual-slope method for enhanced depth sensitivity in frequency-domain near-infrared spectroscopy
用于增强频域近红外光谱深度灵敏度的双斜率方法
- 批准号:
10624381 - 财政年份:2021
- 资助金额:
$ 57.16万 - 项目类别: