Dual-slope method for enhanced depth sensitivity in frequency-domain near-infrared spectroscopy
用于增强频域近红外光谱深度灵敏度的双斜率方法
基本信息
- 批准号:10624381
- 负责人:
- 金额:$ 44.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:Arachnoid materBiologicalBiomedical EngineeringBlood VesselsBlood VolumeBlood flowBrainBrain imagingBreastCerebrumClinicalCognitiveCollectionComplexDataDedicationsDevelopmentDevicesDiagnosticDiffuseDiffusionDura MaterEffectivenessFatty acid glycerol estersFrequenciesFunctional ImagingGenerationsGeometryHumanImageLasersLightMammary Gland ParenchymaMammographyMeasurementMeasuresMethodsMonitorMonte Carlo MethodMorphologic artifactsMotionMuscleNear-Infrared SpectroscopyNoiseOpticsOxygen ConsumptionOxygen saturation measurementPathologyPerformancePhasePlayPrefrontal CortexPropertyResearchResearch Project GrantsRoleScalp structureSchemeSignal TransductionSiliconSkeletal MuscleSkinSourceSpecificitySpectrum AnalysisStrokeSubarachnoid SpaceSurfaceSystemTechniquesTechnologyTelemetryTestingTheoretical StudiesTimeTissuesWalkingbrain tissuecerebral hemodynamicscerebral oxygenationclinical applicationcognitive taskcognitive testingcomputerized data processingcostcost effectivecraniumdesigndetectordiagnostic tooldiffuse optical spectroscopy and imagingfabricationflexibilityhemodynamicshuman subjectimprovedin vivoinstrumentinstrumentationmicrochipmicrosystemsneurovascularnovelnovel strategiesperformance testspoint of carepoint-of-care diagnosticssignal processingsimulationsolid statesubcutaneoustheorieswearable devicewirelesswireless communication
项目摘要
PROJECT SUMMARY
In this Bioengineering Research project, we propose to develop a novel technique for frequency-domain near-
infrared spectroscopy (FD-NIRS) that aims to achieve selective sensitivity to deeper tissue in non-invasive
diffuse optical spectroscopy and imaging. A technique that features a stronger sensitivity to deeper tissue
relative to superficial tissue can have a broad impact on non-invasive optical diagnostics and monitoring and is
especially important in cerebral oximetry and functional brain imaging. The proposed technique is based on the
new concept of phase dual-slopes (this is the phase of the modulated optical signal measured in FD-NIRS),
which requires a minimum of two light sources and two optical detectors placed on the tissue according to a
special arrangement. In addition to achieving selective sensitivity to deeper tissue, phase dual slopes are
weakly sensitive to instrumental drifts and motion artifacts (except spikes), which is a highly desirable property
for robust measurements. First, we will use diffusion theory and Monte Carlo simulations to identify
source/detector geometrical arrangements and intensity modulation frequencies that optimize performance of
the phase dual-slope for a variety of heterogeneous layered media. Second, we will implement optimal phase
dual-slope conditions with a commercial FD-NIRS instrument to demonstrate effectiveness on tissue-like
phantoms, and we will design special source-detector arrays for imaging based on the Moore-Penrose
pseudoinverse of the Jacobian matrix for phase dual-slope measurements. Third, we will design and build a
dedicated compact, wearable, fiber-less, and cost-effective FD-NIRS device for further broadening the
applicability of the phase dual-slope method to freely moving subjects in everyday conditions, and for point-of-
care applications. Fourth, we will perform human studies for technical performance tests (in skeletal muscle
during vascular occlusions) and to demonstrate the effectiveness of the phase dual-slope method for functional
brain imaging (in the prefrontal cortex during cognitive activation). In particular, the latter study will elucidate
the relative blood flow/blood volume contributions to cortical hemodynamics and will allow for dual-task
measurements in subjects performing cognitive tasks while walking. The broad objective of this project is to
advance the field of diffuse optical measurements of biological tissue by developing special techniques for
collection and analysis of FD-NIRS data to enhance the quality, reliability, and information content of non-
invasive NIRS in research and clinical applications.
项目概要
在这个生物工程研究项目中,我们建议开发一种频域近场新技术
红外光谱 (FD-NIRS),旨在非侵入性地实现对更深组织的选择性敏感性
漫射光谱和成像。一种对深层组织具有更强敏感性的技术
相对于浅表组织可以对非侵入性光学诊断和监测产生广泛的影响,并且
在脑血氧测定和功能性脑成像中尤其重要。所提出的技术基于
相位双斜率的新概念(这是在 FD-NIRS 中测量的调制光信号的相位),
这需要至少两个光源和两个光学探测器放置在组织上,根据
特别安排。除了实现对更深组织的选择性敏感性之外,相位双斜率还可以
对仪器漂移和运动伪影(尖峰除外)较弱敏感,这是一个非常理想的特性
用于稳健的测量。首先,我们将使用扩散理论和蒙特卡罗模拟来识别
源/探测器的几何排列和强度调制频率,优化性能
各种异质层状介质的相位双斜率。二、我们将实施最优阶段
使用商用 FD-NIRS 仪器的双斜率条件来证明对组织样细胞的有效性
我们将基于摩尔-彭罗斯模型设计特殊的源探测器阵列用于成像
用于相位双斜率测量的雅可比矩阵的伪逆。第三,我们将设计并建造一个
专用紧凑、可穿戴、无纤维且经济高效的 FD-NIRS 设备,可进一步拓宽
相位双斜率方法对于日常条件下自由移动的对象以及点的适用性
护理应用。第四,我们将进行技术性能测试的人体研究(骨骼肌
血管闭塞期间)并证明相位双斜率方法对于功能性
脑成像(认知激活期间的前额皮质)。特别是,后一项研究将阐明
相对血流量/血容量对皮质血流动力学的贡献,并将允许双重任务
对在步行时执行认知任务的受试者进行测量。该项目的总体目标是
通过开发特殊技术,推进生物组织的漫射光学测量领域
FD-NIRS 数据的收集和分析,以提高非非相关数据的质量、可靠性和信息内容
侵入式 NIRS 在研究和临床应用中的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SERGIO FANTINI其他文献
SERGIO FANTINI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SERGIO FANTINI', 18)}}的其他基金
Dual-slope method for enhanced depth sensitivity in frequency-domain near-infrared spectroscopy
用于增强频域近红外光谱深度灵敏度的双斜率方法
- 批准号:
10457966 - 财政年份:2021
- 资助金额:
$ 44.43万 - 项目类别:
Dual-slope method for enhanced depth sensitivity in frequency-domain near-infrared spectroscopy
用于增强频域近红外光谱深度灵敏度的双斜率方法
- 批准号:
10210759 - 财政年份:2021
- 资助金额:
$ 44.43万 - 项目类别:
Coherent hemodynamics spectroscopy for cerebral autoregulation and blood flow
用于脑自动调节和血流的相干血流动力学光谱
- 批准号:
9921500 - 财政年份:2016
- 资助金额:
$ 44.43万 - 项目类别:
Non-invasive optical detection of cerebral hemodynamics and metabolic transients
脑血流动力学和代谢瞬态的无创光学检测
- 批准号:
9185520 - 财政年份:2016
- 资助金额:
$ 44.43万 - 项目类别:
Near-infrared spectral imaging of the breast for cancer detection and monitoring
用于癌症检测和监测的乳腺近红外光谱成像
- 批准号:
8461711 - 财政年份:2011
- 资助金额:
$ 44.43万 - 项目类别:
Near-infrared spectral imaging of the breast for cancer detection and monitoring
用于癌症检测和监测的乳腺近红外光谱成像
- 批准号:
8848348 - 财政年份:2011
- 资助金额:
$ 44.43万 - 项目类别:
Near-infrared spectral imaging of the breast for cancer detection and monitoring
用于癌症检测和监测的乳腺近红外光谱成像
- 批准号:
8191273 - 财政年份:2011
- 资助金额:
$ 44.43万 - 项目类别:
Near-infrared spectral imaging of the breast for cancer detection and monitoring
用于癌症检测和监测的乳腺近红外光谱成像
- 批准号:
8300116 - 财政年份:2011
- 资助金额:
$ 44.43万 - 项目类别:
相似国自然基金
基于稀疏表示模型和先验结构信息的低剂量PET/MRI成像研究
- 批准号:81871441
- 批准年份:2018
- 资助金额:58.0 万元
- 项目类别:面上项目
基于多级弹簧腿系统的外骨骼下肢康复机器人协动原理研究
- 批准号:51505191
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
驻极体及载药系统的电场效应对增生性瘢痕的抑制作用及机制研究
- 批准号:51477175
- 批准年份:2014
- 资助金额:82.0 万元
- 项目类别:面上项目
FGFR特异性核酸适体的筛选及在分子标记和靶向药物载体中的应用
- 批准号:81471773
- 批准年份:2014
- 资助金额:73.0 万元
- 项目类别:面上项目
构建多样本可变形中国人数字解剖图谱的可行性研究
- 批准号:81401475
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Assessing CSF flow dynamics in pediatric hemorrhagic hydrocephalus
评估小儿出血性脑积水的脑脊液流动动力学
- 批准号:
10591523 - 财政年份:2022
- 资助金额:
$ 44.43万 - 项目类别:
Assessing CSF flow dynamics in pediatric hemorrhagic hydrocephalus
评估小儿出血性脑积水的脑脊液流动动力学
- 批准号:
10420486 - 财政年份:2022
- 资助金额:
$ 44.43万 - 项目类别:
Dual-slope method for enhanced depth sensitivity in frequency-domain near-infrared spectroscopy
用于增强频域近红外光谱深度灵敏度的双斜率方法
- 批准号:
10457966 - 财政年份:2021
- 资助金额:
$ 44.43万 - 项目类别:
Dual-slope method for enhanced depth sensitivity in frequency-domain near-infrared spectroscopy
用于增强频域近红外光谱深度灵敏度的双斜率方法
- 批准号:
10210759 - 财政年份:2021
- 资助金额:
$ 44.43万 - 项目类别: