Partial Differential Equations for Incompressible Fluids and Elastic Solids

不可压缩流体和弹性固体的偏微分方程

基本信息

  • 批准号:
    2206453
  • 负责人:
  • 金额:
    $ 37.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

The focus of this project is to study the behavior of fluids and elastic materials that are modeled mathematically by so-called partial differential equations. The aim is to further our understanding of certain phenomena by utilizing rigorous and quantitative mathematical results. Numerical simulations will also be used in parts of the project. The phenomena that will be studied are motivated by applications to real-life problems with potential societal impacts and are characterized by the presence of singularities and the coupling between different length and time scales. In the first part of the project, the exchange between walls and incompressible fluids will be considered by studying the effect of injection and suction on fluid flow and the effect of the motion of multiple bodies immersed in the fluid and their possible collisions, as in debris flow and sedimentation. In the second part of the project, the object of investigation will be how an incompressible flow transports and deforms directional objects, as in magnetic and conducting fluids, and the interplay between mixing and diffusion, as in biological processes. The last part of the project concerns modeling of faults buried deep in the Earth's crust and their monitoring using data from Global Positioning Systems (GPS) and satellites, with the ultimate goal of predicting the onset of seismic events. The project provides also training opportunities for graduate and undergraduate students, particularly members of under-represented groups.The focus of this project is the study of various problems modeled by partial differential equations concerning the behavior of incompressible fluids and elastic solids, using analytic and geometric techniques. The problems under investigation are motivated by fundamental physical phenomena and bring about challenging mathematical questions, such as fluid-structure interaction problems in the presence of collisions, and non-local and non-linear interface conditions for elastic dislocations. The project is divided into three main parts. The first part concerns the behavior of inviscid and slightly viscous fluids with boundary injection and suction, which can be used to control turbulent flows in pipes and channels and stabilize the viscous boundary layer. The motion of rigid bodies in a viscous fluid when slippage is allowed will also be studied, with applications to debris flow and sedimentation. The second part concerns measures of mixing and stretching for transport of vectors by a flow, such as in magneto-hydrodynamics, and enhanced dissipation for degenerate operators, with applications in electro- and thermo-rheological fluids and mathematical biology. The third part concerns seismic faults and fault monitoring using GPS and satellite data. Progress on these problems is likely to have impact in other fields, such as geophysics and engineering. The presence of multi-scale effects and singularities gives cohesiveness to the project. While its focus lies on analytic results and techniques, several of the proposed problems, such as optimal mixing and modeling of faults, have a natural computational counterpart that will be addressed together with collaborators.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的重点是研究流体和弹性材料的行为,这些材料是通过所谓的部分微分方程对数学建模的。目的是通过利用严格和定量的数学结果来进一步了解某些现象。数值模拟也将用于项目的一部分。将研究的现象是由对潜在社会影响的现实生活问题的应用进行的,其特征是奇异性的存在以及不同的长度和时间尺度之间的耦合。在项目的第一部分中,将通过研究注射和抽吸对流体流动的影响以及浸入流体中的多个物体的影响及其可能的碰撞(如碎片流和沉积物中)来考虑墙壁与不可压缩的流体之间的交换。在项目的第二部分中,调查的对象将是不可压缩的流动如何转运和变形方向物体,例如在磁性和导电流体中,以及混合与扩散之间的相互作用,如生物过程中。该项目的最后一部分涉及对地壳深处埋藏的故障的建模,并使用来自全球定位系统(GPS)和卫星的数据进行监测,其最终目的是预测地震事件的发作。该项目还为研究生和本科生,尤其是代表性不足的群体的成员提供了培训机会。该项目的重点是研究通过分析和几何技术,该项目由部分微分方程建模的各种问题。所研究的问题是由基本的物理现象激发的,并提出了具有挑战性的数学问题,例如在存在碰撞的情况下流体结构相互作用问题,以及用于弹性脱位的非本地和非线性界面条件。该项目分为三个主要部分。第一部分涉及带有边界注入和吸力的无粘性和略微粘性的流体的行为,这些液体可用于控制管道和通道中的湍流,并稳定粘性边界层。当允许滑动时,还将研究粘性流体中刚体的运动,并应用于碎屑流和沉降。第二部分涉及通过流量(例如磁流动力学中的载体传输)进行混合和拉伸的量度,以及对退化运算符的耗散量的增强,以及在电流和热 - 流体流体和数学生物学中的应用。第三部分涉及使用GPS和卫星数据进行地震故障和故障监测。这些问题的进展可能会在其他领域(例如地球物理和工程学)上产生影响。多尺度效果和奇异性的存在使该项目具有凝聚力。尽管它的重点是分析结果和技术,但一些提出的问题(例如故障的最佳混合和建模)具有自然的计算对应方,该奖项将与合作者一起解决。该奖项反映了NSF的法定任务,并被认为是通过该基金会的知识分子功能和广泛的影响来评估CRITERIA的评估,并被认为是值得的。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhanced dissipation by circularly symmetric and parallel pipe flows
  • DOI:
    10.1016/j.physd.2022.133640
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    YUANYUAN FENG-;A. Mazzucato;Camilla Nobili
  • 通讯作者:
    YUANYUAN FENG-;A. Mazzucato;Camilla Nobili
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anna Mazzucato其他文献

Anna Mazzucato的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anna Mazzucato', 18)}}的其他基金

Complex and Singular Behavior in Continuum Mechanics Models
连续力学模型中的复杂和奇异行为
  • 批准号:
    1909103
  • 财政年份:
    2019
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
Singular Problems in Continuum Mechanics
连续介质力学中的奇异问题
  • 批准号:
    1615457
  • 财政年份:
    2016
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
Analysis and computation of partial differential equations in Mechanics and related fields
力学及相关领域偏微分方程的分析与计算
  • 批准号:
    1312727
  • 财政年份:
    2013
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
Applied Analysis of Partial Differential Equations and Related Inverse Problems in Mechanics
力学中偏微分方程及相关反问题的应用分析
  • 批准号:
    1009713
  • 财政年份:
    2010
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
Collaborative Research: Analysis of incompressible high Reynolds number flows
合作研究:不可压缩高雷诺数流动分析
  • 批准号:
    1009714
  • 财政年份:
    2010
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
Aspects of Fluid Mechanics and Elasticity from the Point of View of Microlocal and Fourier Analysis
从微局部和傅里叶分析的角度看流体力学和弹性
  • 批准号:
    0708902
  • 财政年份:
    2007
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
A Micro-Local and Fourier-Analytical Approach to Some Non-Linear Problems in Fluid Mechanics and Elasticity
流体力学和弹性中一些非线性问题的微观局部和傅立叶分析方法
  • 批准号:
    0405803
  • 财政年份:
    2004
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于边界控制的网络化抛物型偏微分系统一致性研究
  • 批准号:
    62303163
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
随机偏微分方程耦合系统有限时间的同步能控性
  • 批准号:
    12301577
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
分数阶微分引导的深度学习方法研究
  • 批准号:
    62372359
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
流体力学和非线性弹性力学中偏微分方程解的正则性研究
  • 批准号:
    12301141
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
偏微分方程解的水平集的凸性及常秩定理的几何应用
  • 批准号:
    12301237
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
  • 批准号:
    2350129
  • 财政年份:
    2024
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
  • 批准号:
    2349575
  • 财政年份:
    2024
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
  • 批准号:
    2349794
  • 财政年份:
    2024
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了