Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances

会议:几何测度理论、调和分析和偏微分方程:最新进展

基本信息

  • 批准号:
    2402028
  • 负责人:
  • 金额:
    $ 4.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-15 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

This award provides travel support for U.S.-based mathematicians to attend the conference "Geometric Measure Theory, Harmonic Analysis and Partial Differential Equations: Recent Advances", to be held at Macquarie University (Australia), June 23--29, 2024. Support will be prioritized for early-career researchers, members of underrepresented groups in mathematics, and researchers without access to other sources of NSF funding. The aim of the conference is to convene leading international scholars, early career researchers, and PhD students in the fields of harmonic analysis, partial differential equations, and geometric measure theory, to disseminate the most recent advances. Harmonic analysis is a foundational mathematical subject that touches upon many different areas of study. Since its inception, the subject of harmonic analysis has developed in close connection to the theory of partial differential equations. In recent years, substantial interest has focused on the use of harmonic analysis as a tool to address questions arising in other fields such as geometric measure theory and number theory. The participation of advanced graduate students and early-career U.S. researchers in this event will facilitate the development of new research collaborations and will strengthen the U.S. research community in this active field.This conference will bring together experts in harmonic analysis, partial differential equations and geometric measure theory to highlight and disseminate recent research progress. These three subjects have had a symbiotic relationship for a long time. Existence and uniqueness of solutions to partial differential equations can be understood through mapping properties and regularity of Calderón-Zygmund operators, a classical topic in harmonic analysis. Rectifiability of sets in Euclidean spaces can be studied through the properties of harmonic measure on their boundaries, which connects to key subjects and tools in partial differential equations. The goal of this workshop is to foster progress in all three of these areas by leveraging their inherent interconnectedness and by bringing together a collection of leading researchers to discuss recent advances and to chart the directions for future progress. The event website is https://event.mq.edu.au/harmonic-analysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This award provides travel support for U.S.-based mathematicians to attend the conference "Geometric Measure Theory, Harmonic Analysis and Partial Differential Equations: Recent Advances", to be held at Macquarie University (Australia), June 23--29, 2024. Support will be prioritized for early-career researchers, members of underrepresented groups in mathematics, and researchers without access to other sources of NSF funding.会议的目的是召集领先的国际学者,早期职业研究人员和博士学位学生在谐波分析,部分微分方程和几何测量理论领域,以传播最新进展。谐波分析是一个基础数学主题,涉及许多不同的研究领域。自成立以来,谐波分析的主题已与部分微分方程理论密切相关。近年来,重大的兴趣集中在使用谐波分析作为解决其他领域中引起的问题(例如几何测量理论和数字理论)的工具。高级研究生和早期职业研究人员的参与将支持新的研究合作的发展,并将加强美国研究社区的这一活跃领域。此次会议将汇集谐波分析,部分微分方程和几何测量理论的专家,以突出显示并分散了最近的研究进度。这三个主题长期存在共生关系。可以通过映射属性和Calderón-Zygmund操作员的规律性来理解偏微分方程的解决方案的存在和独特性,这是谐波分析中的经典主题。可以通过谐波测量的属性对欧几里得空间中的集合的可调性进行研究,该谐波测量的边界上的边界可以与部分微分方程中的关键主题和工具连接。该研讨会的目的是通过利用其继承的相互联系,并汇集一系列领先的研究人员讨论最近的进步并绘制未来进步的方向来促进这三个领域的进步。活动网站是https://event.mq.edu.au/harmonic-analysis.ins奖,反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响评估标准,被认为值得通过评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brett Wick其他文献

Brett Wick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brett Wick', 18)}}的其他基金

Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
  • 批准号:
    2349868
  • 财政年份:
    2024
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
Conference: Recent Advances and Past Accomplishments in Harmonic Analysis
会议:谐波分析的最新进展和过去的成就
  • 批准号:
    2230844
  • 财政年份:
    2022
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
Symmetry Parameter Analysis of Singular Integrals
奇异积分的对称参数分析
  • 批准号:
    2054863
  • 财政年份:
    2021
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
Singular Integrals with Modulation or Rotational Symmetry
具有调制或旋转对称性的奇异积分
  • 批准号:
    2000510
  • 财政年份:
    2019
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
International Conference on Interpolation in Spaces of Analytic Functions at CIRM
CIRM 解析函数空间插值国际会议
  • 批准号:
    1936503
  • 财政年份:
    2019
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
Applications of Harmonic Analysis to Riesz Transforms and Commutators beyond the Classical Settings
谐波分析在经典设置之外的 Riesz 变换和换向器中的应用
  • 批准号:
    1800057
  • 财政年份:
    2018
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
Applications of Harmonic Analysis to Function Theory and Operator Theory
调和分析在函数论和算子理论中的应用
  • 批准号:
    1500509
  • 财政年份:
    2015
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Continuing Grant
CAREER: An Integrated Proposal Based on The Corona Problem
职业:基于新冠问题的综合提案
  • 批准号:
    1603246
  • 财政年份:
    2015
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Continuing Grant
Applications of Harmonic Analysis to Function Theory and Operator Theory
调和分析在函数论和算子理论中的应用
  • 批准号:
    1560955
  • 财政年份:
    2015
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Continuing Grant
The Corona Problem: Connections between Operator Theory, Function Theory and Geometry
电晕问题:算子理论、函数论和几何之间的联系
  • 批准号:
    1200994
  • 财政年份:
    2012
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant

相似国自然基金

基于随机几何的非合作集群一体化估计与行为语义认知研究
  • 批准号:
    62376147
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
极小子流形几何与校准几何的研究
  • 批准号:
    12371055
  • 批准年份:
    2023
  • 资助金额:
    39 万元
  • 项目类别:
    面上项目
基于黎曼几何的复杂干扰环境下信号辨识与分离方法研究
  • 批准号:
    62371046
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于信息几何的超大规模MIMO传输理论方法研究
  • 批准号:
    62371125
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
弦论唯象学与大规模卡拉比-丘几何的计算
  • 批准号:
    12375065
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
  • 批准号:
    2247067
  • 财政年份:
    2023
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
Shape Optimization, Free Boundary Problems, and Geometric Measure Theory
形状优化、自由边界问题和几何测量理论
  • 批准号:
    2247096
  • 财政年份:
    2023
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
CAREER: Weighted Fourier extension estimates and interactions with PDEs and geometric measure theory
职业:加权傅里叶扩展估计以及与偏微分方程和几何测度理论的相互作用
  • 批准号:
    2237349
  • 财政年份:
    2023
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Continuing Grant
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加性组合学和几何测度论
  • 批准号:
    RGPIN-2017-03755
  • 财政年份:
    2022
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Discovery Grants Program - Individual
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加性组合学和几何测度论
  • 批准号:
    RGPIN-2017-03755
  • 财政年份:
    2021
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了