Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics

研究物理学中双曲偏微分方程奇异解的几何技术

基本信息

  • 批准号:
    2349575
  • 负责人:
  • 金额:
    $ 33.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-06-15 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

The Principal Investigator (PI) will study evolution equations that arise in several physical models of nature, including Einstein’s equations of general relativity, Maxwell’s equations of electromagnetism, Euler’s equations of compressible fluid mechanics, and new, modified versions of Euler’s equations that account for viscous effects that were experimentally discovered in the study of the Quark-Gluon Plasma and neutron stars. While these equations have been studied for many decades, much remains to be understood about the dynamics of solutions. This project will focus on deriving theoretical results in one of the most exciting and rapidly advancing areas of study: singularity formation. Roughly, singularities are infinities that can develop in solutions, making the equations exceptionally challenging to study. Such infinities lie at the crux of some of the most fascinating physical phenomena. Outstanding examples include Big Bangs in general relativity, where the curvature of spacetime becomes infinite, and shock waves in compressible fluids, where pressure gradients become infinitely large. The results of the project will shed deep new insights into the laws of nature. The PI will integrate education, research, and scientific training by incorporating undergraduates, Master’s degree students, PhD students, and postdoctoral scholars into the research program.The PI aims to prove novel stable blowup-results in multidimensions for solutions to the Cauchy problem for the PDE systems mentioned above, which are quasilinear and hyperbolic in character. For compressible Euler flow, the goal is to prove shock-formation, with an eye towards understanding the global structure of the largest possible classical solution, i.e, the Maximal Globally Hyperbolic Development (MGHD). There are currently no results on the global structure of the MGHD, and such results are essential for proving the uniqueness of classical solutions with shocks. For the viscous fluid models, there are currently no constructive blowup-results, so any constructive singularity-formation result would be the first of its kind. For Einstein’s equations (coupled to various matter models), the goal is to understand the structure and stability of spacetime singularities, with a focus on techniques that are localizable and robust, thus allowing one to probe new solution regimes. In all of the problems, gauge choices motivated by geometric and analytical considerations lie at the heart of the analysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Principal Investigator (PI) will study evolution equations that arise in several physical models of nature, including Einstein’s equations of general relativity, Maxwell’s equations of electronmagnetism, Euler’s equations of compressible fluid mechanics, and new, modified versions of Euler’s equations that account for viscous effects that were experimentally discovered in the study of the Quark-Gluon Plasma and neutron stars.尽管这些方程已经进行了数十年的研究,但有关解决方案的动态仍有许多待理解。该项目将着重于在最令人兴奋和迅速发展的研究领域之一中得出理论结果:奇异性形成。粗略地,奇异性是可以在解决方案中发展的无限态度,从而使方程式变得异常挑战。这样的无限性在于一些最迷人的物理现象的关键。出色的例子包括一般相对论中的大爆炸,时空的曲率变得无限,以及可压缩的笛子中的冲击波,其中压力梯度变得无限大。该项目的结果将为自然定律提供深刻的新见解。 PI将通过转换本科生,硕士学位学生,博士生和博士后学者将教育,研究和科学培训整合到研究计划中。该PI旨在证明在上述PDE系统中解决cauchy问题的多维稳定性重新质量的新颖稳定性爆炸性,并且在上述PDE系统中提到了Quasilearear和超级bolicolocolic and quasilocolic of quasilocolic inthere and themal in themal intemal in Charnation。对于可压缩的Euler流,目标是证明冲击形成,以了解最大可能的经典解决方案的全球结构,即最大的全球双曲线发育(MGHD)。目前尚无关于MGHD的全球结构的结果,此类结果对于证明具有冲击的经典解决方案的独特性至关重要。对于粘性流体模型,目前尚无建设性的爆炸结果,因此任何建设性的奇异性形成结果都将是同类产品中的第一个。对于爱因斯坦的方程式(与各种物质模型相结合),目标是了解时空奇点的结构和稳定性,重点关注的是可本地化且可靠的技术,从而允许人们探测新的解决方案方案。在所有问题中,由几何和分析考虑的仪表选择位于分析的核心。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,通过评估被认为是宝贵的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Jared Speck其他文献

The nonlinear future stability of the FLRW family of solutions to the Euler–Einstein system with a positive cosmological constant
  • DOI:
    10.1007/s00029-012-0090-6
    10.1007/s00029-012-0090-6
  • 发表时间:
    2011-02
    2011-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jared Speck
    Jared Speck
  • 通讯作者:
    Jared Speck
    Jared Speck
Stable ODE-type blowup for some quasilinear wave equations with derivative-quadratic nonlinearities
  • DOI:
    10.2140/apde.2020.13.93
    10.2140/apde.2020.13.93
  • 发表时间:
    2017-09
    2017-09
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Jared Speck
    Jared Speck
  • 通讯作者:
    Jared Speck
    Jared Speck
The emergence of the singular boundary from the crease in $3D$ compressible Euler flow
$3D$ 可压缩欧拉流中奇异边界的出现
  • DOI:
  • 发表时间:
    2022
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Abbrescia;Jared Speck
    L. Abbrescia;Jared Speck
  • 通讯作者:
    Jared Speck
    Jared Speck
The global stability of the Minkowski spacetime solution to the Einstein-nonlinear system in wave coordinates
  • DOI:
    10.2140/apde.2014.7.771
    10.2140/apde.2014.7.771
  • 发表时间:
    2010-09
    2010-09
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Jared Speck
    Jared Speck
  • 通讯作者:
    Jared Speck
    Jared Speck
A Summary of Some New Results on the Formation of Shocks in the Presence of Vorticity
  • DOI:
  • 发表时间:
    2017
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jared Speck
    Jared Speck
  • 通讯作者:
    Jared Speck
    Jared Speck
共 14 条
  • 1
  • 2
  • 3
前往

Jared Speck的其他基金

Geometric Methods for Singular Solutions to Nonlinear Hyperbolic Partial Differential Equations
非线性双曲偏微分方程奇异解的几何方法
  • 批准号:
    2054184
    2054184
  • 财政年份:
    2021
  • 资助金额:
    $ 33.09万
    $ 33.09万
  • 项目类别:
    Standard Grant
    Standard Grant
CAREER: Geometric Methods in Hyperbolic Partial Differential Equations
职业:双曲偏微分方程中的几何方法
  • 批准号:
    1914537
    1914537
  • 财政年份:
    2018
  • 资助金额:
    $ 33.09万
    $ 33.09万
  • 项目类别:
    Continuing Grant
    Continuing Grant
CAREER: Geometric Methods in Hyperbolic Partial Differential Equations
职业:双曲偏微分方程中的几何方法
  • 批准号:
    1454419
    1454419
  • 财政年份:
    2015
  • 资助金额:
    $ 33.09万
    $ 33.09万
  • 项目类别:
    Continuing Grant
    Continuing Grant
The Global Analysis of Fluids in General Relativity
广义相对论中流体的整体分析
  • 批准号:
    1162211
    1162211
  • 财政年份:
    2012
  • 资助金额:
    $ 33.09万
    $ 33.09万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

基于环形光栅的转轴几何误差动态同时测量方法与关键技术研究
  • 批准号:
    52375523
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
离散几何在建筑计算性设计中的应用技术体系与创新方法研究
  • 批准号:
    52378043
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于几何结构感知的数字孪生人体影像数据增强技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于几何结构感知的数字孪生人体影像数据增强技术研究
  • 批准号:
    62272298
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
实现复振幅调制的几何相液晶空间光调制器关键技术研究
  • 批准号:
    62175239
  • 批准年份:
    2021
  • 资助金额:
    58.00 万元
  • 项目类别:
    面上项目

相似海外基金

A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
  • 批准号:
    10752276
    10752276
  • 财政年份:
    2024
  • 资助金额:
    $ 33.09万
    $ 33.09万
  • 项目类别:
Studying the selectivity control of promoted FTS catalysts using infra-red techniques
利用红外技术研究促进费托合成催化剂的选择性控制
  • 批准号:
    2903314
    2903314
  • 财政年份:
    2023
  • 资助金额:
    $ 33.09万
    $ 33.09万
  • 项目类别:
    Studentship
    Studentship
New Proximity Labeling Tools for Studying 3D Chromatin Structure and Function
用于研究 3D 染色质结构和功能的新型邻近标记工具
  • 批准号:
    10607285
    10607285
  • 财政年份:
    2023
  • 资助金额:
    $ 33.09万
    $ 33.09万
  • 项目类别:
A stem cell-based model of the human muscle spindle for studying proprioceptive dysfunction in distal arthrogryposis syndromes
基于干细胞的人体肌梭模型,用于研究远端关节挛缩综合征的本体感觉功能障碍
  • 批准号:
    10664301
    10664301
  • 财政年份:
    2023
  • 资助金额:
    $ 33.09万
    $ 33.09万
  • 项目类别:
A human Liver-on-a-Chip model for studying alcohol-associated liver disease
用于研究酒精相关肝病的人类芯片肝脏模型
  • 批准号:
    10752839
    10752839
  • 财政年份:
    2023
  • 资助金额:
    $ 33.09万
    $ 33.09万
  • 项目类别: