Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
基本信息
- 批准号:2346780
- 负责人:
- 金额:$ 4.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The conference ``Recent Advances in Nonlinear Partial Differential Equations” will be held from May 13-May 17, 2024, at the University of Minnesota, Twin Cities. The conference provides much needed opportunities for the participants to keep track of the significant developments in some of the most active research areas in PDEs. The schedule is carefully arranged to allow junior participants ample time to interact with experts in their area of interest. There will be a poster session where junior participants are encouraged to present their own research. Panel discussions on career developments and experts-led sessions on open problems will further enhance the involvement of participants in the conference. Speakers will be asked for permission to record their talks that will be made publicly available for a wider accessibility. Special attention will be paid to advertise and recruit participants from underrepresented groups.The study of fluid equations and Calculus of Variations (CVs) is undergoing very rapid and significant progress in recent years. The conference features a wide scope of active topics in both fluid equations and calculus of variations. Specifically, the scientific themes of the conference include (i) Computation and Computer Assisted Proofs in PDEs, (ii) Convex Integration Techniques and its Applications, (iii) Regularity theory of the Euler and Navier Stokes equations, (iv) Hydrodynamic stability in high Reynolds number regime, (v) Calculus of Variations from material sciences. Important breakthroughs have been achieved in recent years in all these closely related areas. CVs is a fertile source of ideas for many branches of PDEs including fluid equations. It is hoped that by bringing together experts from both areas a cross-fertilization is more likely to occur. Detailed logistic information on the conference can be found at https://cse.umn.edu/math/events/recent-advances-nonlinear-partial-differential-equations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
“非线性偏微分方程的最新进展”会议将于 2024 年 5 月 13 日至 17 日在明尼苏达大学双城分校举行。该会议为与会者提供了跟踪重大发展的急需机会。在偏微分方程中一些最活跃的研究领域,日程安排经过精心安排,以便初级参与者有足够的时间与他们感兴趣的领域的专家互动。将有一个海报会议,鼓励初级参与者展示自己的研究。 。关于职业发展的小组讨论和由专家主持的关于开放问题的会议将进一步提高与会者对会议的参与度,并将获得特别关注,以便公开录制他们的演讲。近年来,流体方程和变分微积分(CV)的研究正在取得非常迅速和显着的进展,会议在流体方程和变分微积分方面讨论了广泛的活跃主题。具体来说,会议的科学主题包括(i)偏微分方程中的计算和计算机辅助证明,(ii)凸积分技术及其应用,(iii)欧拉和纳维斯托克斯方程的正则理论,(iv)高雷诺数状态下的水动力稳定性,(v)微积分近年来,所有这些密切相关的领域都取得了重要突破,它是包括流体方程在内的许多偏微分方程的丰富思想来源。希望通过汇集两个领域的专家,更有可能发生会议的详细后勤信息:https://cse.umn.edu/math/events/recent-advances-nonlinear-partial。 -微分方程。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hao Jia其他文献
WLnet: Towards an Approach for Robust Workload Estimation Based on Shallow Neural Networks
WLnet:一种基于浅层神经网络的鲁棒工作负载估计方法
- DOI:
10.1109/access.2020.3044732 - 发表时间:
2021 - 期刊:
- 影响因子:3.9
- 作者:
Zhe Sun;Binghua Li;Feng Duan;Hao Jia;Shan Wang;Yu Liu;Andrzej Cichocki;Cesar F. Caiafa;Jordi Solé-Casals - 通讯作者:
Jordi Solé-Casals
Predicting QoS of virtual machines via Bayesian network with XGboost-induced classes
使用 XGboost 诱导类通过贝叶斯网络预测虚拟机的 QoS
- DOI:
10.1007/s10586-020-03183-2 - 发表时间:
2020-09 - 期刊:
- 影响因子:4.4
- 作者:
Hao Jia;Yue Kun;Duan Liang;Zhang Binbin;Fu Xiaodong - 通讯作者:
Fu Xiaodong
Magnetic-Field-Driven Reconfigurable Microsphere Arrays for Laser Display Pixels
用于激光显示像素的磁场驱动可重构微球阵列
- DOI:
10.1021/acsnano.2c08766 - 发表时间:
2023 - 期刊:
- 影响因子:17.1
- 作者:
Baipeng Yin;Hao Jia;Hong Wang;Rui Chen;Lixin Xu;Yong Sheng Zhao;Chuang Zhang;Jiannian Yao - 通讯作者:
Jiannian Yao
Microring modulator matrix integrated with mode multiplexer and de-multiplexer for on-chip optical interconnect
集成了模式复用器和解复用器的微环调制器矩阵,用于片上光学互连
- DOI:
10.1364/oe.25.000422 - 发表时间:
2016-08 - 期刊:
- 影响因子:3.8
- 作者:
Hao Jia;Lei Zhang;Jianfeng Ding;Lingchen Zheng;Chen Yuan;Lin Yang - 通讯作者:
Lin Yang
A Probability-Based Hybrid User Model for Recommendation System
一种基于概率的推荐系统混合用户模型
- DOI:
10.1155/2016/9535808 - 发表时间:
2016-01 - 期刊:
- 影响因子:0
- 作者:
Hao Jia;Yan Yan;Wang Guoxin;Gong Lin;Zhao Bo - 通讯作者:
Zhao Bo
Hao Jia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hao Jia', 18)}}的其他基金
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 4.4万 - 项目类别:
Standard Grant
CAREER: New Mechanisms for Stability, Regularity and Long Time Dynamics of Partial Differential Equations
职业:偏微分方程稳定性、正则性和长期动力学的新机制
- 批准号:
1945179 - 财政年份:2020
- 资助金额:
$ 4.4万 - 项目类别:
Continuing Grant
相似国自然基金
曲面双曲守恒律方程的时间连续最近点方法
- 批准号:12301530
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
最近两个冰期旋回东亚夏季风与西风相互作用的模拟研究
- 批准号:42171152
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
季风边缘区:理解最近130ka以来中国半干旱-半湿润过渡带的环境变化
- 批准号:
- 批准年份:2021
- 资助金额:39.9 万元
- 项目类别:
季风边缘区:理解最近130ka以来中国半干旱—半湿润过渡带的环境变化
- 批准号:
- 批准年份:2020
- 资助金额:万元
- 项目类别:国际(地区)合作与交流项目
最近5000年中国西北干旱区果树利用及环境适应的木材记录研究
- 批准号:42002202
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 4.4万 - 项目类别:
Standard Grant
Conference: Recent advances in applications of harmonic analysis to convex geometry
会议:调和分析在凸几何中的应用的最新进展
- 批准号:
2246779 - 财政年份:2023
- 资助金额:
$ 4.4万 - 项目类别:
Standard Grant
Conference: Recent Advances in Mathematical Fluid Dynamics
会议:数学流体动力学的最新进展
- 批准号:
2247145 - 财政年份:2023
- 资助金额:
$ 4.4万 - 项目类别:
Standard Grant
Conference: IHES 2023 Summer School: Recent advances in algebraic K-theory
会议:IHES 2023 暑期学校:代数 K 理论的最新进展
- 批准号:
2304723 - 财政年份:2023
- 资助金额:
$ 4.4万 - 项目类别:
Standard Grant
Conference: Recent advances in the mechanistic understanding of avian responses to environmental challenges
会议:鸟类应对环境挑战的机制理解的最新进展
- 批准号:
2336743 - 财政年份:2023
- 资助金额:
$ 4.4万 - 项目类别:
Standard Grant