Conference: Recent advances in applications of harmonic analysis to convex geometry

会议:调和分析在凸几何中的应用的最新进展

基本信息

  • 批准号:
    2246779
  • 负责人:
  • 金额:
    $ 1.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

This award will provide funding for the conference “Recent advances in applications of Harmonic Analysis to Convex Geometry”, to be held at North Dakota State University (Fargo, ND) on April 22-23, 2023. Several long-standing open problems in the area of convex geometry have recently been successfully solved using techniques from harmonic analysis. The objective of the conference is to bring together four experts in the field, who will each give a mini-course to an audience of mostly U.S. based graduate students and postdoctoral fellows. This will provide them with training in state-of-the-art methods and will open opportunities to start collaborations with more senior researchers. The majority of the funding will be used to support the participation of graduate students and early-career researchers, with priority given to women and members of other underrepresented groups. The following website will provide information about the conference: https://sites.google.com/ndsu.edu/recent-advances/homeThe methods of Harmonic Analysis and Convex Geometry have a long history of successful interaction and have led to solutions of many long-standing problems by some of the proposed main speakers, such as the Busemann-Petty problem and, very recently, Ulam’s floating body problem, which was unsolved since the 1940s. The techniques used in these recent breakthroughs are now understood to be potentially useful to solve additional open problems, in which the four proposed speakers have an extensive record of successful research. The present conference aims to provide training in these very active areas of research for U.S. early career mathematicians. There will be a poster session for graduate students to showcase their work, and a special panel on open questions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maria Alfonseca其他文献

Maria Alfonseca的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maria Alfonseca', 18)}}的其他基金

CBMS Conference: Reflectionless measures, Wolff's potentials, and rectifiability, June 15-19, 2015
CBMS 会议:无反思措施、沃尔夫的潜力和可纠正性,2015 年 6 月 15 日至 19 日
  • 批准号:
    1444237
  • 财政年份:
    2015
  • 资助金额:
    $ 1.36万
  • 项目类别:
    Standard Grant
Geometric, convexity and regularity properties of certain classes of convex bodies
某些类凸体的几何、凸性和正则性性质
  • 批准号:
    1100657
  • 财政年份:
    2011
  • 资助金额:
    $ 1.36万
  • 项目类别:
    Standard Grant

相似国自然基金

曲面双曲守恒律方程的时间连续最近点方法
  • 批准号:
    12301530
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
季风边缘区:理解最近130ka以来中国半干旱—半湿润过渡带的环境变化
  • 批准号:
    42111530183
  • 批准年份:
    2021
  • 资助金额:
    40.00 万元
  • 项目类别:
    国际(地区)合作与交流项目
季风边缘区:理解最近130ka以来中国半干旱-半湿润过渡带的环境变化
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    39.9 万元
  • 项目类别:
最近两个冰期旋回东亚夏季风与西风相互作用的模拟研究
  • 批准号:
    42171152
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
季风边缘区:理解最近130ka以来中国半干旱—半湿润过渡带的环境变化
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 1.36万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 1.36万
  • 项目类别:
    Standard Grant
Conference: Recent Advances in Mathematical Fluid Dynamics
会议:数学流体动力学的最新进展
  • 批准号:
    2247145
  • 财政年份:
    2023
  • 资助金额:
    $ 1.36万
  • 项目类别:
    Standard Grant
Conference: Recent advances in the mechanistic understanding of avian responses to environmental challenges
会议:鸟类应对环境挑战的机制理解的最新进展
  • 批准号:
    2336743
  • 财政年份:
    2023
  • 资助金额:
    $ 1.36万
  • 项目类别:
    Standard Grant
Conference: IHES 2023 Summer School: Recent advances in algebraic K-theory
会议:IHES 2023 暑期学校:代数 K 理论的最新进展
  • 批准号:
    2304723
  • 财政年份:
    2023
  • 资助金额:
    $ 1.36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了