Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
基本信息
- 批准号:2350129
- 负责人:
- 金额:$ 35.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project focuses on understanding certain types of partial differential equations (PDE) commonly encountered in physics and engineering, such as those governing elasticity and conductivity. When we study how materials deform under stress or conduct electricity, we often use equations to describe these phenomena. However, some equations don't behave smoothly, especially when dealing with high contrast materials or complex shapes. These situations can lead to equations that are much harder to analyze, and traditional methods may not work. Another area of study is equations from fluid dynamics. Understanding these questions is crucial for practical applications like designing airplanes or predicting weather patterns, and it also inspires new ideas in mathematics and statistics. Finally, the Principal Investigator (PI) is interested in kinetic equations, which describe how particles move and interact in systems like nuclear fusion experiments. By studying these equations, scientists hope to improve our understanding of how plasmas behave in extreme conditions, such as inside a tokamak. The project provides research training opportunities for graduate students. As part of this project, the PI will carry out research closely related to the aforementioned topics and will attempt to address some of the open problems in these areas. The focus will be on several projects that can be gathered into three main topical areas. First, the project will develop new methods to study elliptic equations arising in composite materials (e.g., elasticity problems, conductivity problems). The PI is particularly interested in the blowup behaviors of solutions to PDE in domains with Lipschitz inclusions, equations involving the p-Laplacian, and the insulated problem for the Lamé system. Second, the project will explore the free boundary problem involving an incompressible fluid permeating a porous medium, often referred to as the one-phase Muskat problem. The focus will be on investigating the regularity of solutions to the two- and three-dimensional one-phase Muskat problem in the whole space, as well as on exploring the short-term and long-term smoothing effects of these solutions. Finally, the project will investigate boundary regularity of linear kinetic equations as well as the stability and global well-posedness of nonlinear kinetic equations, including the relativistic Vlasov-Maxwell-Landau system and the spatially inhomogeneous Boltzmann equations in general domains.This project is jointly funded by the Analysis Program in the Division of Mathematical Sciences (DMS) and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的重点是理解物理和工程中通常遇到的某些类型的部分微分方程(PDE),例如那些管理弹性和电导率的部分。当我们研究材料在压力下如何变形或导电时,我们经常使用方程来描述这些现象。但是,某些方程式的行为并不顺利,尤其是在处理高对比度材料或复杂形状时。这些情况可能会导致方程式更难分析,并且传统方法可能行不通。研究的另一个领域是流体动力学的方程式。理解这些问题对于实用应用至关重要,例如设计飞机或预测天气模式,并且还激发了数学和统计学方面的新想法。最后,主要研究者(PI)在动力学方程中很有趣,该方程描述了粒子在核融合实验等系统中的移动和相互作用。通过研究这些方程式,科学家希望提高我们对等离子体在极端条件(例如Tokamak)中的行为的理解。该项目为研究生提供了研究培训机会。作为该项目的一部分,PI将进行与近似元素主题密切相关的研究,并将试图解决这些领域的一些开放问题。重点将放在几个可以收集到三个主要主题领域的项目上。首先,该项目将开发新的方法来研究复合材料(例如弹性问题,电导率问题)中产生的椭圆方程。 PI对具有Lipschitz夹杂物的域中PDE解决方案的爆炸行为特别感兴趣,涉及P-Laplacian的方程以及Lamé系统的绝缘问题。其次,该项目将探索涉及多孔培养基的不可压缩流体的自由边界问题,通常称为单相麝香问题。重点将是研究整个空间中二维和三维单相的麝香问题的规律性,以及探索这些解决方案的短期和长期平滑效应。最后,该项目将研究线性动力学方程的边界规则性,以及非线性动力学方程的稳定性和全球范围,包括相对论Vlasov-Maxwell-landau系统以及空间上的不均匀性Boltzmann方程在一般领域中的竞争性计划(Mathem Interiality in Mathem Interials)在Mathem Inalital Insportive(Matherm of Science)中进行了竞争。 (EPSCOR)。该奖项反映了NSF的法定使命,并通过使用基金会的知识分子优点和更广泛的影响评估标准评估被认为是珍贵的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hongjie Dong其他文献
Gradient estimates for the insulated conductivity problem: the non-umbilical case
绝缘电导率问题的梯度估计:非脐带缆案例
- DOI:
10.1016/j.matpur.2024.06.002 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Hongjie Dong;YanYan Li;Zhuolun Yang - 通讯作者:
Zhuolun Yang
Conormal derivative problems for stationary Stokes system in Sobolev spaces
Sobolev空间中平稳Stokes系统的共正导数问题
- DOI:
10.3934/dcds.2018097 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Jongkeun Choi;Hongjie Dong;Doyoon Kim - 通讯作者:
Doyoon Kim
Weighted $L_q$-estimates for stationary Stokes system with partially BMO coefficients
具有部分 BMO 系数的平稳斯托克斯系统的加权 $L_q$ 估计
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Hongjie Dong;Doyoon Kim - 通讯作者:
Doyoon Kim
Fundamental solutions for second-order parabolic systems with drift terms
具有漂移项的二阶抛物线系统的基本解
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Hongjie Dong;Seick Kim - 通讯作者:
Seick Kim
Regularity theory for parabolic equations with singular degenerate coefficients
具有奇异简并系数的抛物型方程的正则理论
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Hongjie Dong;T. Phan - 通讯作者:
T. Phan
Hongjie Dong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hongjie Dong', 18)}}的其他基金
Regularity Questions in Linear and Nonlinear Partial Differential Equations
线性和非线性偏微分方程的正则性问题
- 批准号:
2055244 - 财政年份:2021
- 资助金额:
$ 35.12万 - 项目类别:
Standard Grant
Topics in Regularity Theory of Partial Differential Equations
偏微分方程正则论专题
- 批准号:
1600593 - 财政年份:2016
- 资助金额:
$ 35.12万 - 项目类别:
Continuing Grant
CAREER: Problems in regularity theory for linear and nonlinear partial differential equations
职业:线性和非线性偏微分方程的正则理论问题
- 批准号:
1056737 - 财政年份:2011
- 资助金额:
$ 35.12万 - 项目类别:
Continuing Grant
Research topics in partial differential equations
偏微分方程研究课题
- 批准号:
0800129 - 财政年份:2008
- 资助金额:
$ 35.12万 - 项目类别:
Standard Grant
相似国自然基金
中、大尺寸硫醇配体保护金团簇的结构和电子结构规律性的理论研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中、大尺寸硫醇配体保护金团簇的结构和电子结构规律性的理论研究
- 批准号:22203053
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于协同控制理论的列车间隔实时调整优化方法研究
- 批准号:61403020
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
城市电网空间负荷预测的新型理论架构及其关键技术研究
- 批准号:51177009
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
北京地区60年疫病发生、气象变动规律性与五运六气理论关联性研究
- 批准号:81072896
- 批准年份:2010
- 资助金额:33.0 万元
- 项目类别:面上项目
相似海外基金
Regularity theory for elliptic and parabolic free boundary problems
椭圆和抛物线自由边界问题的正则理论
- 批准号:
417627993 - 财政年份:2019
- 资助金额:
$ 35.12万 - 项目类别:
Research Grants
Regularity of Evolutionary Problems via Harmonic Analysis and Operator Theory
通过调和分析和算子理论研究演化问题的规律性
- 批准号:
263969954 - 财政年份:2014
- 资助金额:
$ 35.12万 - 项目类别:
Research Grants
New developements of the regularity theory on the solutions to the Liouville-Gelfand type problems and the related parabolic dynamics
求解Liouville-Gelfand型问题及相关抛物动力学的正则理论的新进展
- 批准号:
24654043 - 财政年份:2012
- 资助金额:
$ 35.12万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
CAREER: Problems in regularity theory for linear and nonlinear partial differential equations
职业:线性和非线性偏微分方程的正则理论问题
- 批准号:
1056737 - 财政年份:2011
- 资助金额:
$ 35.12万 - 项目类别:
Continuing Grant
Geometric Measure Theory and Free Boundary Regularity Problems
几何测度论与自由边界正则问题
- 批准号:
0244834 - 财政年份:2003
- 资助金额:
$ 35.12万 - 项目类别:
Standard Grant