Complex and Singular Behavior in Continuum Mechanics Models

连续力学模型中的复杂和奇异行为

基本信息

  • 批准号:
    1909103
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

The goal of this project is to study models in the mechanics of fluids and elastic materials characterized by a complex and potentially singular behavior in the response of the physical system. Such models are deeply rooted in applications. The project will investigate, in particular, models of faults and rock slippage in the Earth's crust, models for the behavior of slightly viscous fluids around moving bodies in aero- and hydro-dynamics, as well as around the wing of an airplane or around the propeller of a submarine, and models for effective mixing in fluids, which has applications ranging from industrial to environmental processes. A key aspect of the project is the use of rigorous mathematical analysis, combined with simulations whenever feasible, to obtain quantitative results that can be used in a predictive fashion, with potential direct societal impacts. For instance, one part of the project addresses how data from global positioning systems (GPS) can be used, through a mathematical algorithm, to locate buried faults which would be otherwise inaccessible, and to estimate the relative slip of the rock layers along the fault, a predictor of earthquakes. The project provides training opportunities for graduate and undergraduate students, particularly women and members of underrepresented groups. This project aims to study various aspects of models in elasticity and fluid mechanics in the presence of singularities. Analytical techniques will be employed primarily, but the impetus for the proposed problems comes from applications, such as models of dislocations in geophysics, optimal bounds for mixing in convection-dominated problems, and boundary layer analysis for incompressible fluids. The project consists of three separate, but connected, parts: I. Incompressible Fluid Mechanics: I.a. Optimal mixing with diffusion; I.b. Boundary layer analysis in singular domains; II. Elasticity: direct and inverse problems for models of dislocations in geophysics. The unifying aspects of the project are the presence of singularities due to discontinuities and incompatibilities in the parameters for the underlying model equations and to irregular geometries, and the focus on rigorous, quantitative estimates, such as optimal bounds in mixing and quantitative stability estimates in inverse problems. The project contributes to the development of mathematical approaches to challenging open problems by combining known techniques in a novel way, such as in mixing problems, where geometric analysis, partial differential equations, and optimal control are employed, and in advancing our basic understanding of important physical processes, such as anomalous diffusion in turbulent mixing and modeling of interseismic build-up along faults and microseismicity, which may impact other fields, in particular geophysics and engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是研究流体和弹性材料的力学模型,其特征是物理系统响应中复杂且潜在的奇异行为。这些模型深深扎根于应用程序中。该项目将特别研究地壳中的断层和岩石滑移模型、空气动力学和流体动力学中移动物体周围的微粘性流体的行为模型,以及飞机机翼周围或飞机周围的模型。潜艇的螺旋桨,以及流体有效混合的模型,其应用范围从工业到环境过程。该项目的一个关键方面是使用严格的数学分析,并在可行的情况下结合模拟,以获得可用于预测方式的定量结果,从而产生潜在的直接社会影响。例如,该项目的一部分涉及如何通过数学算法使用全球定位系统 (GPS) 的数据来定位原本无法到达的埋藏断层,并估计岩层沿断层的相对滑移,地震预报器。该项目为研究生和本科生,特别是女性和代表性不足群体的成员提供培训机会。 该项目旨在研究存在奇点的弹性和流体力学模型的各个方面。将主要采用分析技术,但所提出问题的推动力来自于应用,例如地球物理学中的位错模型、对流主导问题中混合的最佳边界以及不可压缩流体的边界层分析。该项目由三个独立但相互关联的部分组成: I. 不可压缩流体力学:I.a.扩散的最佳混合; I.b.奇异域边界层分析;二.弹性:地球物理学位错模型的正问题和反问题。该项目的统一方面是由于基础模型方程和不规则几何形状的参数的不连续性和不兼容性而存在奇点,并且注重严格的定量估计,例如混合中的最佳界限和逆向定量稳定性估计问题。该项目通过以新颖的方式结合已知技术,促进数学方法的发展,以挑战开放问题,例如在混合问题中,采用几何分析、偏微分方程和最优控制,并增进我们对重要问题的基本理解。物理过程,例如湍流混合中的异常扩散以及沿断层和微震活动的震间积聚建模,这可能会影响其他领域,特别是地球物理学和工程学。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来获得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dislocations in a layered elastic medium with applications to fault detection
Remarks on anomalous dissipation for passive scalars
关于无源标量的反常耗散的评论
Global Solutions of the Two-Dimensional Kuramoto–Sivashinsky Equation with a Linearly Growing Mode in Each Direction
  • DOI:
    10.1007/s00332-021-09748-8
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    3
  • 作者:
    D. Ambrose;A. Mazzucato
  • 通讯作者:
    D. Ambrose;A. Mazzucato
Global existence for the two-dimensional Kuramoto-Sivashinsky equation with advection
Approximate solutions to second-order parabolic equations: Evolution systems and discretization
二阶抛物型方程的近似解:演化系统和离散化
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anna Mazzucato其他文献

Anna Mazzucato的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anna Mazzucato', 18)}}的其他基金

Partial Differential Equations for Incompressible Fluids and Elastic Solids
不可压缩流体和弹性固体的偏微分方程
  • 批准号:
    2206453
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Singular Problems in Continuum Mechanics
连续介质力学中的奇异问题
  • 批准号:
    1615457
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Analysis and computation of partial differential equations in Mechanics and related fields
力学及相关领域偏微分方程的分析与计算
  • 批准号:
    1312727
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Applied Analysis of Partial Differential Equations and Related Inverse Problems in Mechanics
力学中偏微分方程及相关反问题的应用分析
  • 批准号:
    1009713
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Analysis of incompressible high Reynolds number flows
合作研究:不可压缩高雷诺数流动分析
  • 批准号:
    1009714
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Aspects of Fluid Mechanics and Elasticity from the Point of View of Microlocal and Fourier Analysis
从微局部和傅里叶分析的角度看流体力学和弹性
  • 批准号:
    0708902
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
A Micro-Local and Fourier-Analytical Approach to Some Non-Linear Problems in Fluid Mechanics and Elasticity
流体力学和弹性中一些非线性问题的微观局部和傅立叶分析方法
  • 批准号:
    0405803
  • 财政年份:
    2004
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

对偶Auslander转置及其诱导模类的同调性质研究
  • 批准号:
    11501144
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
涡旋光束二阶非线性效应在简单数学运算中的应用研究
  • 批准号:
    61307001
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
流体湍流运动的相关数学分析
  • 批准号:
    10971174
  • 批准年份:
    2009
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目
变分不等式的一些简单数值方法与网络平衡问题
  • 批准号:
    10501024
  • 批准年份:
    2005
  • 资助金额:
    15.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Extreme and Singular Behavior in Fundamental Models of Fluid Mechanics
流体力学基本模型中的极端和奇异行为
  • 批准号:
    1813003
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Endpoint Behavior of Modulation Invariant Singular Integrals
调制不变奇异积分的端点行为
  • 批准号:
    1650810
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Systematic Search For Extreme and Singular Behavior in Some Fundamental Models of Fluid Mechanics
流体力学一些基本模型中的极端和奇异行为的系统搜索
  • 批准号:
    1515161
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Endpoint Behavior of Modulation Invariant Singular Integrals
调制不变奇异积分的端点行为
  • 批准号:
    1500449
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Differentiable structures on metric measure spaces, einstein spaces, quantitative behavior of singular sets
度量测度空间、爱因斯坦空间、奇异集的定量行为上的可微结构
  • 批准号:
    1406407
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了