A Micro-Local and Fourier-Analytical Approach to Some Non-Linear Problems in Fluid Mechanics and Elasticity

流体力学和弹性中一些非线性问题的微观局部和傅立叶分析方法

基本信息

  • 批准号:
    0405803
  • 负责人:
  • 金额:
    $ 11.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-08-01 至 2008-07-31
  • 项目状态:
    已结题

项目摘要

Project Abstract: 0405803 A Mazzucato, Pennsylvania State UniversityA Micro-Local and Fourier-Analytical Approach to Some Non-Linear Problems in Fluid Mechanics and Elasticity The investigator A. L. Mazzucato will address several questions in themathematical investigation of fluid flows and elasticity using methodsfrom Fourier and micro-local analysis. Micro-local analysis seeks toidentify points and directions along which a solution to partialdifferential equations looses regularity, by localizing it in both space and frequency. Modern techniques in Fourier analysis consist indecomposing a signal by testing it against a given set of waves orwave-forms at different length scales, so that relevant information can be extracted accurately and efficiently. Turbulent flows, for example, exhibits a complex behavior at both large and small scales. The coupling between different scales is often due to the non-linearity of the underlying equations. The investigator will concentrate on the following problems. She will study dissipation of enstrophy, the squared vorticity, for the two-dimensional Euler equations, which model inviscid fluid flow, by considering transport by irregular vector fields. Understanding howenstrophy is dissipated is important for two-dimensional turbulence. She will analyze certain weak solutions to the Navier-Stokesequations, which describe the motion of viscous fluids, with globallyinfinite energy by using generalized energy inequalities. Allowing for weaker control at infinity could in turn lead to refined estimates on the local behavior of solutions. She will investigate existence of mild solutions to the Navier-Stokes equations by semi-group methods in polyhedral domains, which are domains of particular interest in numerical simulations. Finally, the investigator will continue studying the inverse problem of unique identification of elastic properties by dynamicsurface measurements, exploiting the covariance of the elasticityequations under coordinate changes. The determination of elasticparameters has significant applications in medical imaging.The present project stresses the inter-disciplinary nature of the analysis of partial differential equations, which mathematically model physical phenomena. Theoretical tools developed to discern subtle properties of these equations have been successfully employed in real-life problems. Micro-local analysis studies how singularities are propagated by differential equations. Changes in material properties cause singularities to form in waves and can hence be determined when direct measurement is not possible, as in seismology, oil exploration, and medical diagnostics. Fourier analysis examines the content of a signal at a given frequency or length scale. Understanding crucial aspects of turbulent flows, forexample concentration and dissipation of energy and vorticity, atdifferent scales has an impact in disciplines ranging from aerodynamics, to meteorology, to human physiology. The need for numerical simulation and design has underlined the role of complex geometries, where a refined mathematical analysis is often necessary for a qualitative understanding. With this project the investigator also aims at strengthening hercollaborative effort with other female researchers both in the UnitedStates and abroad.
项目摘要:0405803 A Mazzucato,宾夕法尼亚州立大学流体力学和弹性中一些非线性问题的微观局部和傅里叶分析方法研究者 A. L. Mazzucato 将使用傅里叶和微观方法解决流体流动和弹性数学研究中的几个问题- 本地分析。微观局部分析旨在通过将偏微分方程的解在空间和频率上进行局部化来识别偏微分方程的解失去规律性的点和方向。傅里叶分析的现代技术包括通过在不同长度尺度上针对给定的一组波或波形进行测试来分解信号,从而可以准确有效地提取相关信息。例如,湍流在大尺度和小尺度上都表现出复杂的行为。不同尺度之间的耦合通常是由于基础方程的非线性造成的。 研究者将重点关注以下问题。她将通过考虑不规则矢量场的传输来研究二维欧拉方程的熵耗散(平方涡度),该方程模拟无粘性流体流动。 了解营养如何消散对于二维湍流非常重要。她将利用广义能量不等式分析纳维-斯托克斯方程的某些弱解,该方程描述了具有全局无限能量的粘性流体的运动。允许无穷大处较弱的控制反过来可能会导致对解的局部行为的精确估计。她将通过多面体域中的半群方法研究纳维-斯托克斯方程的温和解的存在性,这是数值模拟中特别感兴趣的领域。 最后,研究人员将继续研究通过动态表面测量唯一识别弹性特性的逆问题,利用坐标变化下弹性方程的协方差。弹性参数的确定在医学成像中具有重要的应用。本项目强调偏微分方程分析的跨学科性质,它对物理现象进行数学建模。为辨别这些方程的微妙性质而开发的理论工具已成功应用于现实生活中的问题。微观局部分析研究奇点如何通过微分方程传播。材料特性的变化会导致波中形成奇点,因此在无法直接测量时可以确定奇点,例如在地震学、石油勘探和医学诊断中。 傅里叶分析检查给定频率或长度范围内的信号内容。了解不同尺度的湍流的关键方面,例如能量和涡度的集中和耗散,对空气动力学、气象学和人类生理学等学科产生影响。对数值模拟和设计的需求强调了复杂几何形状的作用,其中精细的数学分析通常是定性理解所必需的。通过这个项目,研究人员还旨在加强与美国和国外其他女性研究人员的合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anna Mazzucato其他文献

Anna Mazzucato的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anna Mazzucato', 18)}}的其他基金

Partial Differential Equations for Incompressible Fluids and Elastic Solids
不可压缩流体和弹性固体的偏微分方程
  • 批准号:
    2206453
  • 财政年份:
    2022
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Standard Grant
Complex and Singular Behavior in Continuum Mechanics Models
连续力学模型中的复杂和奇异行为
  • 批准号:
    1909103
  • 财政年份:
    2019
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Standard Grant
Singular Problems in Continuum Mechanics
连续介质力学中的奇异问题
  • 批准号:
    1615457
  • 财政年份:
    2016
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Standard Grant
Analysis and computation of partial differential equations in Mechanics and related fields
力学及相关领域偏微分方程的分析与计算
  • 批准号:
    1312727
  • 财政年份:
    2013
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Standard Grant
Applied Analysis of Partial Differential Equations and Related Inverse Problems in Mechanics
力学中偏微分方程及相关反问题的应用分析
  • 批准号:
    1009713
  • 财政年份:
    2010
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Standard Grant
Collaborative Research: Analysis of incompressible high Reynolds number flows
合作研究:不可压缩高雷诺数流动分析
  • 批准号:
    1009714
  • 财政年份:
    2010
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Standard Grant
Aspects of Fluid Mechanics and Elasticity from the Point of View of Microlocal and Fourier Analysis
从微局部和傅里叶分析的角度看流体力学和弹性
  • 批准号:
    0708902
  • 财政年份:
    2007
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Standard Grant

相似国自然基金

兴趣电商企业的地方嵌入及其对当地土特产产业带动能力的影响研究
  • 批准号:
    72373158
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
自然保护地伞护物种与当地社区的空间作用机理及测度方法研究-以人鹤系统为例
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
黄河流域自然保护区管理效度对当地社会-生态耦合协调的影响与机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
适用于亚跨音速飞行器层流设计的新型当地化横流转捩预测模式研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
共享经济对当地市场现有产业发展的溢出效应研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Electrochemically Generated Inhaled Nitric Oxide (iNO) delivery via High Flow Nasal Cannula (HFNC)
通过高流量鼻插管 (HFNC) 输送电化学产生的吸入一氧化氮 (iNO)
  • 批准号:
    10637303
  • 财政年份:
    2023
  • 资助金额:
    $ 11.13万
  • 项目类别:
Optimal hedging strategies and its numerical methods under the incomplete markets
不完全市场下的最优对冲策略及其数值方法
  • 批准号:
    17K13764
  • 财政年份:
    2017
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Research of Harmonic analysis and Partial differential equations
调和分析与偏微分方程研究
  • 批准号:
    15K20919
  • 财政年份:
    2015
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Properties of the associated spaces of polynomials which satisfy local functional equations
满足局部函数方程的多项式关联空间的性质
  • 批准号:
    24540049
  • 财政年份:
    2012
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Heterogeneous Photocatalytic System for Water Remediation
用于水体修复的多相光催化系统
  • 批准号:
    7747515
  • 财政年份:
    2009
  • 资助金额:
    $ 11.13万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了