Aspects of Fluid Mechanics and Elasticity from the Point of View of Microlocal and Fourier Analysis

从微局部和傅里叶分析的角度看流体力学和弹性

基本信息

  • 批准号:
    0708902
  • 负责人:
  • 金额:
    $ 12.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-01 至 2010-07-31
  • 项目状态:
    已结题

项目摘要

Mathematical aspects of fluid mechanics and elasticity will be investigated using Fourier and microlocal analysis techniques. Despite recent developments, fundamental questions remain open in understanding fluid flow and elastic behavior in solids, in particular with respect to turbulence, elastic wave propagation, and singularity formation. A main goal is to obtain qualitative, but physically relevant, information from properties of solutions to the underlying differential equations. The complex phenomena observed in physical systems correspond to ill-posedness of the equations, in the form of instability, irregularity, and non-uniqueness of the corresponding solutions. Microlocal and Fourier analysis have proven effective tools for this investigation, as they encode the smoothness, size, and oscillations in a signal accurately and efficiently. Microlocal analysis provides crucial directional information in the presence of complex geometries, such as corners and cracks. Three main problems will be addressed. The first is dissipation of enstrophy, the mean square of vorticity, for incompressible 2D and quasi-geostrophic flows, and local decay of the energy spectrum for incompressible 3D flows using the Wigner transform. The second isanisotropic static elasticity on curved polyhedral domains with cracks. The third is identification of density and anisotropic elastic constants in the interior of a body from dynamic surface displacement-traction measurements. The proposed research consists of problems where the exchange between mathematics and other sciences has been fruitful. Fluid turbulence is a fundamental occurrence, which still lacks a complete understanding. It affects the way fluids transport and mix other substances with implications in global climate models, fish migration, and industrial design, for example. The mechanism by which vortices form and transfer energy at different length scales is central to turbulence and is one of the problems under study. Modeling of slow crack formation is important for structural stability in engineering. Mathematical analysis proposed in the second problem under study validates the results of computer simulations, which can be used to predict failure in elastic materials under mechanical stress. Identification of elastic response in materials from remote measurements gives rise to non-invasive, diagnostic imaging of the human body, and imaging of the earth's crust in seismology and oil exploration. The investigation proposed in the third problem aims at determining a priori when sufficient information in the data exists for image reconstruction.The overall goal of the proposal is to exploit mathematical results to advance understanding of physical phenomena with impact on real-life applications.
将使用傅里叶和微局域分析技术研究流体力学和弹性的数学方面。尽管最近取得了进展,但在理解固体中的流体流动和弹性行为方面,特别是在湍流、弹性波传播和奇点形成方面,基本问题仍然悬而未决。主要目标是从基础微分方程的解的属性中获取定性但物理相关的信息。在物理系统中观察到的复杂现象与方程的不适定性相对应,表现为相应解的不稳定性、不规则性和非唯一性。 微局域和傅里叶分析已被证明是这项研究的有效工具,因为它们准确有效地对信号的平滑度、大小和振荡进行编码。 微局部分析可在存在复杂几何形状(例如角和裂缝)的情况下提供关键的方向信息。将解决三个主要问题。 第一个是熵耗散,不可压缩 2D 和准地转流的涡度均方,以及使用维格纳变换的不可压缩 3D 流的能谱的局部衰减。 带有裂纹的弯曲多面体域上的第二个各向异性静弹性。 第三是通过动态表面位移-牵引测量来识别物体内部的密度和各向异性弹性常数。拟议的研究包括数学与其他科学之间的交流富有成果的问题。 流体湍流是一种基本现象,目前仍缺乏完整的认识。 它影响流体运输和混合其他物质的方式,对全球气候模型、鱼类迁徙和工业设计等产生影响。涡流在不同长度尺度上形成和传递能量的机制是湍流的核心,也是正在研究的问题之一。 缓慢裂纹形成的建模对于工程中的结构稳定性很重要。 研究中的第二个问题中提出的数学分析验证了计算机模拟的结果,可用于预测弹性材料在机械应力下的失效。 通过远程测量识别材料的弹性响应,可以实现人体的非侵入性诊断成像,以及地震学和石油勘探中的地壳成像。第三个问题中提出的研究旨在确定数据中何时存在足够的信息用于图像重建的先验。该提案的总体目标是利用数学结果来促进对物理现象的理解,从而影响现实生活中的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anna Mazzucato其他文献

Anna Mazzucato的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anna Mazzucato', 18)}}的其他基金

Partial Differential Equations for Incompressible Fluids and Elastic Solids
不可压缩流体和弹性固体的偏微分方程
  • 批准号:
    2206453
  • 财政年份:
    2022
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Complex and Singular Behavior in Continuum Mechanics Models
连续力学模型中的复杂和奇异行为
  • 批准号:
    1909103
  • 财政年份:
    2019
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Singular Problems in Continuum Mechanics
连续介质力学中的奇异问题
  • 批准号:
    1615457
  • 财政年份:
    2016
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Analysis and computation of partial differential equations in Mechanics and related fields
力学及相关领域偏微分方程的分析与计算
  • 批准号:
    1312727
  • 财政年份:
    2013
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Applied Analysis of Partial Differential Equations and Related Inverse Problems in Mechanics
力学中偏微分方程及相关反问题的应用分析
  • 批准号:
    1009713
  • 财政年份:
    2010
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Analysis of incompressible high Reynolds number flows
合作研究:不可压缩高雷诺数流动分析
  • 批准号:
    1009714
  • 财政年份:
    2010
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
A Micro-Local and Fourier-Analytical Approach to Some Non-Linear Problems in Fluid Mechanics and Elasticity
流体力学和弹性中一些非线性问题的微观局部和傅立叶分析方法
  • 批准号:
    0405803
  • 财政年份:
    2004
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

纳米塑料暴露于生物体液中的凝聚动力学机制研究
  • 批准号:
    42377418
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
胶体液滴系统可视化研究印刷电子蒸发成膜的动力学演化与多尺度调控
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
柔性电子喷印制造中非牛顿流体液滴生成和冲击动力学研究
  • 批准号:
    11932009
  • 批准年份:
    2019
  • 资助金额:
    300 万元
  • 项目类别:
    重点项目
胶体液滴蒸发中多物理效应协同下的颗粒输运动力学跨尺度研究
  • 批准号:
    11902321
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
基于统计力学原理的可液化土体流动性理论和分析方法
  • 批准号:
    51678300
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

Signal processing approach to mesh generations in simulations of fluid interfaces
流体界面模拟中网格生成的信号处理方法
  • 批准号:
    21K20325
  • 财政年份:
    2021
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Theoretical analysis of multidimensional nonequilibrium gas flows and fluid dynamics equations near the boundaries
多维非平衡气体流动和边界附近流体动力学方程的理论分析
  • 批准号:
    19H02065
  • 财政年份:
    2019
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Asymptotic theory based on molecular dynamics of vapor-liquid system
基于汽液系统分子动力学的渐近理论
  • 批准号:
    18K18824
  • 财政年份:
    2018
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Mathematical research on mechanical problems of incompressible fluid
不可压缩流体力学问题的数学研究
  • 批准号:
    18H01137
  • 财政年份:
    2018
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mathamatical analysis of various fluid flow phenomena
各种流体流动现象的数学分析
  • 批准号:
    17H04825
  • 财政年份:
    2017
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了