OP: Super-Coupling Nanoplasmonics with Silicon Photonics for Mid-Infrared Biosensing

OP:超耦合纳米等离子体与硅光子学用于中红外生物传感

基本信息

  • 批准号:
    1809240
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Nontechnical: This project aims to develop a miniaturized and integrated optical sensor system to detect biomedical molecules with the potential for point-of-care applications. The sensor measures the molecule's unique optical absorption features of infrared light, with high sensitivity and the capability of identifying them. Moreover, the project will realize a novel structure consisting of metallic optical nanostructures and silicon waveguide, which are efficiently coupled together. The new architecture may also lead to efficient optoelectronic devices for high-speed optical communications that will play an important role in future data centers and 5G wireless network. For education, the project will provide graduate and undergraduate students with experience in nanotechnology and instrumentation. For K-12 outreach, the PIs will build an interactive Activity Station at the Science Museum of Minnesota every year and enhance the public awareness of the benefits of nanotechnology to our society. More women and underrepresented minorities will be given opportunities to experience nanotechnology. Finally, the PIs will continue support for REU and local recruit high school students for summer research experience.Technical: Nanoplasmonics and silicon photonics are two categories of photonic systems with unique features and advantages in the manipulation and detection of light. Integrating the two distinctive systems in a synergistic way can potentially combine their merits and circumvent their weakness, to enable applications ranging from chemical and biological sensing to optoelectronics and optical communications. The realization of such a hybrid integration approach with both efficiency and sensitivity, however, is hindered by the large phase mismatching between the different types of optical modes in the two systems, which leads to low coupling efficiency between them. This program aims to solve the problem and achieve a hybrid platform that efficiently integrates nanoplasmonic resonators and silicon photonic waveguides with an emphasis on operation in the technologically important mid-infrared (mid-IR) band. The phase mismatching challenge is resolved innovatively by utilizing the super-coupling effect brought by the epsilon-near-zero (ENZ) phenomenon in ring-shaped plasmonic coaxial resonators to achieve waveguide-plasmonics coupling efficiency greater than 90%. The hybrid system enables surface-enhanced infrared absorption (SEIRA) sensing, which will be demonstrated with model systems such as lipid bilayer membranes and proteins. There are three-fold intellectual merits of the program. First, the novel physics of super-coupling enabled by the epsilon-near-zero (ENZ) phenomenon is explored and utilized to efficiently couple nanoplasmonic resonators with silicon waveguides. The second intellectual merit lies in the research emphasis in the mid-IR band, which is currently experiencing very fast development and is exceedingly powerful for spectroscopic chemical and biological sensing. The third intellectual merit of the program is to achieve SEIRA biosensing. A new reflection mode detection scheme is investigated that avoids the passage of IR light through the solution and thus largely circumvents water absorption. The anticipated significant improvement in the signal-to-noise ratio would directly lead to enhanced detection sensitivity in SEIRA.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性:该项目旨在开发一种小型化集成光学传感器系统,用于检测具有即时护理应用潜力的生物医学分子。该传感器测量分子独特的红外光吸收特性,具有高灵敏度和识别能力。此外,该项目将实现一种由金属光学纳米结构和硅波导组成的新颖结构,它们有效地耦合在一起。新架构还可能带来用于高速光通信的高效光电器件,这将在未来的数据中心和5G无线网络中发挥重要作用。在教育方面,该项目将为研究生和本科生提供纳米技术和仪器方面的经验。对于 K-12 的外展活动,PI 每年都会在明尼苏达州科学博物馆建立一个互动活动站,并提高公众对纳米技术给社会带来的好处的认识。更多女性和代表性不足的少数族裔将有机会体验纳米技术。最后,PI将继续支持REU,并在当地招募高中生进行暑期研究经验。技术:纳米等离子体和硅光子是两类光子系统,在光的操纵和检测方面具有独特的功能和优势。以协同方式集成这两个独特的系统可以结合它们的优点并规避它们的缺点,从而实现从化学和生物传感到光电子和光通信的应用。然而,这种兼具效率和灵敏度的混合集成方法的实现受到两个系统中不同类型光模式之间的大相位失配的阻碍,这导致它们之间的耦合效率低。该计划旨在解决该问题并实现一个混合平台,该平台可有效集成纳米等离子体谐振器和硅光子波导,重点是在技术上重要的中红外(mid-IR)波段运行。利用环形等离子体同轴谐振器中ε近零(ENZ)现象带来的超级耦合效应,创新性地解决了相位失配的难题,实现了大于90%的波导-等离子体耦合效率。该混合系统可实现表面增强红外吸收(SEIRA)传感,这将通过脂质双层膜和蛋白质等模型系统进行演示。该计划具有三重智力优势。首先,探索并利用由ε近零(ENZ)现象实现的新型超耦合物理,以有效地将纳米等离子体谐振器与硅波导耦合。第二个智力优势在于中红外波段的研究重点,该波段目前正在经历非常快速的发展,并且对于光谱化学和生物传感非常强大。该计划的第三个智力优点是实现了SEIRA生物传感。研究了一种新的反射模式检测方案,该方案避免红外光穿过溶液,从而很大程度上避免水吸收。预期信噪比的显着改善将直接导致 SEIRA 检测灵敏度的提高。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Impact of Surface Roughness in Nanogap Plasmonic Systems
纳米间隙等离子体系统中表面粗糙度的影响
  • DOI:
    10.1021/acsphotonics.0c00099
  • 发表时间:
    2020-01-24
  • 期刊:
  • 影响因子:
    7
  • 作者:
    C. Ciracì;F. Vidal;Daehan Yoo;J. Peraire;Sang‐Hyun Oh;David R. Smith
  • 通讯作者:
    David R. Smith
Coupled-mode theory for plasmonic resonators integrated with silicon waveguides towards mid-infrared spectroscopic sensing
与硅波导集成的等离子体谐振器的耦合模式理论,用于中红外光谱传感
  • DOI:
    10.1364/oe.28.002020
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Chen, Che;Oh, Sang;Li, Mo
  • 通讯作者:
    Li, Mo
Modeling and observation of mid-infrared nonlocality in effective epsilon-near-zero ultranarrow coaxial apertures
有效ε-近零超窄同轴孔径中红外非定域性的建模和观察
  • DOI:
    10.1038/s41467-019-12038-3
  • 发表时间:
    2019-10-02
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Daehan Yoo;F. Vidal;C. Ciracì;N. Nguyen;David R. Smith;J. Peraire;Sang‐Hyun Oh
  • 通讯作者:
    Sang‐Hyun Oh
Waveguide-Integrated Compact Plasmonic Resonators for On-Chip Mid-Infrared Laser Spectroscopy
用于片上中红外激光光谱的波导集成紧凑型等离激元谐振器
  • DOI:
    10.1021/acs.nanolett.8b03156
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Chen, Che;Mohr, Daniel A.;Choi, Han;Yoo, Daehan;Li, Mo;Oh, Sang
  • 通讯作者:
    Oh, Sang
Ultrastrong plasmon–phonon coupling via epsilon-near-zero nanocavities
通过ε-近零纳米腔实现超强等离子体-声子耦合
  • DOI:
    10.1038/s41566-020-00731-5
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    35
  • 作者:
    Yoo, Daehan;de León;Pelton, Matthew;Lee, In;Mohr, Daniel A.;Raschke, Markus B.;Caldwell, Joshua D.;Martín;Oh, Sang
  • 通讯作者:
    Oh, Sang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sang-Hyun Oh其他文献

Surface plasmon enhanced spectroscopies and time and space resolved methods: general discussion
  • DOI:
    10.1039/c5fd90023a
  • 发表时间:
    2015-05
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Jeremy Baumberg;Michael Nielsen;Sergey Bozhevolnyi;Viktor Podolskiy;Thomas Ebbesen;Kaiqiang Lin;Alexei A. Kornyshev;Jacob Khurgin;James Hutchison;Katarzyna Matczyszyn;Jino George;Emiliano Cortes;James T. Hugall;Adi Salomon;Paul Dawson;Olivier Martin;Santhosh Kotni;F. Javier García de Abajo;Michael Flatté;Martin Moskovits;Duncan Graham;Stefan Maier;Masayuki Futamata;Sang-Hyun Oh;Javier Aizpurua;Zachary Schultz;Riccardo Sapienza
  • 通讯作者:
    Riccardo Sapienza
High-density metallic nanogap arrays for the sensitive detection of single-walled carbon nanotube thin films
  • DOI:
    10.1039/c4fd00233d
  • 发表时间:
    2015-03
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Hyeong-Ryeol Park;Seon Namgung;Xiaoshu Chen;Sang-Hyun Oh
  • 通讯作者:
    Sang-Hyun Oh
Bandgap engineering of two-dimensional semiconductor materials
二维半导体材料的带隙工程
  • DOI:
    10.1038/s41699-020-00162-4
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    A. Chaves;J. G. Azadani;Hussain Alsalman;D. R. da Costa;R. Frisenda;A. J. Chaves;Seung Hyun Song;Y. D. Kim;Daowei He;Jiadong Zhou;A. Castellanos-Gomez;F. M. Peeters;Zheng Liu;C. L. Hinkle;Sang-Hyun Oh;Peide D. Ye;Steven J. Koester;Young Hee Lee;Ph. Avouri
  • 通讯作者:
    Ph. Avouri
Fine tuning of nanopipettes using atomic layer deposition for single molecule sensing
  • DOI:
    10.1039/c5an01001b
  • 发表时间:
    2015-06
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Jasmine Y. Y. Sze;Shailabh Kumar;Aleksandar P. Ivanov;Sang-Hyun Oh;Joshua B. Edel
  • 通讯作者:
    Joshua B. Edel
Surface passivation of a photonic crystal band-edge laser by atomic layer deposition of SiO2and its application for biosensing
  • DOI:
    10.1039/c4nr07552h
  • 发表时间:
    2015-01
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Hyungrae Cha;Jeongkug Lee;Luke R. Jordan;Si Hoon Lee;Sang-Hyun Oh;Hyo Jin Kim;Juhun Park;Seunghun Hong;Heonsu Jeon
  • 通讯作者:
    Heonsu Jeon

Sang-Hyun Oh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sang-Hyun Oh', 18)}}的其他基金

Collaborative Research: EAGER: Quantum Manufacturing: Vertical Coupling and Cross-Talk Shielding of Superconducting Quantum Devices
合作研究:EAGER:量子制造:超导量子器件的垂直耦合和串扰屏蔽
  • 批准号:
    2240245
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Waveguide-Integrated Graphene Nano-tweezERs (WIGNER) for rapid sorting and analysis of nanovesicles and viruses
合作研究:用于快速分选和分析纳米囊泡和病毒的波导集成石墨烯纳米镊子(WIGNER)
  • 批准号:
    2227460
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Waveguide-Integrated Graphene Nano-tweezERs (WIGNER) for rapid sorting and analysis of nanovesicles and viruses
合作研究:用于快速分选和分析纳米囊泡和病毒的波导集成石墨烯纳米镊子(WIGNER)
  • 批准号:
    2227460
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Atomic Layer Lithography for Integrated Optoelectronic Devices with Sub-10-nm Critical Dimensions
用于具有亚 10 纳米临界尺寸的集成光电器件的原子层光刻
  • 批准号:
    1610333
  • 财政年份:
    2016
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Nanomanufacturing and System Integration of Multi-Functional Metallic Pyramidal Probes
多功能金属金字塔探针的纳米制造和系统集成
  • 批准号:
    1363334
  • 财政年份:
    2014
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Enhanced efficiency in organic photovoltaic cells using engineered plasmonic nanostructures
使用工程等离子体纳米结构提高有机光伏电池的效率
  • 批准号:
    1067681
  • 财政年份:
    2011
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CAREER: IDBR: Ultrasmooth Patterned Metals for Membrane Biology
职业:IDBR:用于膜生物学的超光滑图案金属
  • 批准号:
    1054191
  • 财政年份:
    2011
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: IDBR: Nanopore optical biosensor development for analyzing membrane protein interactions
合作研究:IDBR:用于分析膜蛋白相互作用的纳米孔光学生物传感器开发
  • 批准号:
    0964216
  • 财政年份:
    2010
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

水稻SUPER WOMAN 3 (SPW3) 基因调控花器官发育的分子机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
基于质谱的Super SILAC结合膜富集技术解析镁离子相关蛋白调控网络在Ⅲ型前列腺炎中的作用机制研究
  • 批准号:
    22164007
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
Triptolide通过调控Super-enhancer抑制抗体产生改善抗体介导的移植肾排斥反应
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
发展双模态超分辨率全景成像技术,描绘自噬和迁移性胞吐过程中的细胞器互作网络
  • 批准号:
    92054301
  • 批准年份:
    2020
  • 资助金额:
    900.0 万元
  • 项目类别:
    重大研究计划
Max-plus代数上的super本征问题
  • 批准号:
    11901486
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER: Spintronic extreme sub-wavelength and super-gain active electronically scanned antenna (AESA) enabled by phonon-magnon-plasmon-photon coupling.
EAGER:自旋电子极端亚波长和超增益有源电子扫描天线(AESA),通过声子-磁振子-等离子体-光子耦合实现。
  • 批准号:
    2235789
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
EAGER: SUPER: Coupling High-Energy Phonons into High-Tc Superconductors
EAGER:SUPER:将高能声子耦合到高温超导体中
  • 批准号:
    2132343
  • 财政年份:
    2021
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Development of a super-clean ultra-intense petawatt laser by controlling non-linear coupling effect
通过控制非线性耦合效应开发超净超强拍瓦激光器
  • 批准号:
    20H01882
  • 财政年份:
    2020
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mass Sensing, Strong Vibrational Coupling and Super-Resolution Imaging of Noble Metal Nanostructures
贵金属纳米结构的质量传感、强振动耦合和超分辨率成像
  • 批准号:
    2002300
  • 财政年份:
    2020
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Development of super resolution optical imaging device coupling between photons and electrons
光子与电子耦合超分辨率光学成像器件的研制
  • 批准号:
    19K22101
  • 财政年份:
    2019
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了