EAGER: Spintronic extreme sub-wavelength and super-gain active electronically scanned antenna (AESA) enabled by phonon-magnon-plasmon-photon coupling.

EAGER:自旋电子极端亚波长和超增益有源电子扫描天线(AESA),通过声子-磁振子-等离子体-光子耦合实现。

基本信息

  • 批准号:
    2235789
  • 负责人:
  • 金额:
    $ 22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

A serious shortcoming of conventional antennas is that their efficiencies plummet when they are made much smaller than the wavelength of the electromagnetic radiation they transmit. This is an impediment to building ultra-small antennas that can be medically implanted in a patient or embedded in a stealth device for defense or crime-fighting. This roadblock has been recently overcome by a novel genre of antennas implemented with magnetostrictive nanomagnets built on a piezoelectric substrate. A periodic electric field applied to the substrate periodically strains the nanomagnets, which makes their magnetizations oscillate in time and emit electromagnetic waves. The phenomenon that underlies this effect is phonon-magnon-photon coupling. The efficiencies of these novel antennas were found to exceed the theoretical limits on the efficiencies of traditional antennas by more than 100,000 times. The present research will introduce an additional feature by coupling electric charge oscillations (called plasmons) into the antennas by modifying their structure, which can significantly improve the antenna performance. Moreover, by manipulating the direction of the periodic electric field applied to the substrate, the direction of the strain wave propagating in the substrate can be changed, which may allow capability to steer the radiated electromagnetic beam in space, thereby implementing an active electronically scanned antenna (AESA). These antennas will have the potential to open up many new embedded applications, e.g., medically implanted devices that communicate with external monitors while consuming miniscule amounts of energy, ultra-small stealthy listening devices, personal communicators and wearable electronics. Apart from the fundamental knowledge and technological impact the proposed research will benefit society by producing graduate and undergraduate students trained in nanofabrication, characterization and measurement, as well as in device simulation and design. Particular attention will be paid to entrepreneurship opportunities, increasing K-12 and minority participation through various programs, and educating public through popular lectures and internet blogs.Recently it has been demonstrated in the PI’s group that periodic arrays of magnetostrictive nanomagnets deposited on a piezoelectric substrate (a two-dimensional artificial multiferroic crystal), can generate a novel genre of spintronic electromagnetic nano-antennas whose gain and radiation efficiency exceed by several orders of magnitude reaching theoretical limits as compared to traditional (electromagnetically actuated) antennas of the same dimensions. A low frequency (~100 MHZ) surface acoustic wave (SAW) launched into the substrate excites magnetization precession in the nanomagnets via the Villari effect and the precessing magnetization radiates electromagnetic waves in the surrounding medium at the SAW frequency, thereby resulting a novel antenna A high frequency (~10 GHz) SAW, on the other hand, resonantly excites confined spin wave modes in the nanomagnet via phonon-magnon coupling and these spin waves then radiate electromagnetic waves (photons) into the surrounding medium via magnon-photon coupling at the same frequency as the SAW. This constituted tripartite phonon-magnon-photon coupling. The proposed research will extend the concept by introducing surface plasmons into the mode mixing to study four-way phonon-plasmon-magnon-photon coupling which is expected to enhance the mode conversion efficiency from phonons to plasmons to magnons to photons, thereby enhancing antenna properties. Additionally, it has been observed that the antenna radiation pattern changes if the direction of SAW propagation changes with respect to the easy axes of the nanomagnets. The goal of this project is to exploit this feature to electronically steer the radiated beam by changing the direction of SAW propagation in an effort to implement an active electronically scanned antenna (AESA).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
传统天线的一个严重缺点是,当它们的尺寸远小于其传输的电磁辐射的波长时,其效率会急剧下降,这对于构建可在医学上植入患者或隐身的超小型天线来说是一个障碍。最近,一种新型天线克服了这一障碍,该天线采用建立在压电基板上的磁致伸缩纳米磁体,周期性地施加到基板上。使纳米磁体发生应变,使其磁化随时间振荡并发射电磁波,这种效应背后的现象是声子-磁振子-光子耦合。人们发现这些新型天线的效率超出了传统天线效率的理论极限。目前的研究将通过修改天线将电荷振荡(称为等离子体)耦合到天线中来引入额外的功能。此外,通过操纵施加到基底的周期性电场的方向,可以改变在基底中传播的应变波的方向,这可以允许控制辐射电磁束的能力。在太空中,从而实现有源电子扫描天线(AESA),这些天线将有可能开辟许多新的嵌入式应用,例如,在消耗极少量的同时与外部监视器通信的医疗植入设备。除了基础知识和技术影响之外,拟议的研究还将通过培养接受纳米制造、表征和测量以及设备模拟和培训的研究生和本科生来造福社会。设计将特别关注创业机会,通过各种计划增加 K-12 和少数族裔的参与,并通过流行讲座和互联网博客教育公众。最近,PI 小组证明了周期性的一系列活动。沉积在压电基板(二维人造多铁晶体)上的磁致伸缩纳米磁体可以产生一种新型的自旋电子电磁纳米天线,其增益和辐射效率比传统(电磁驱动)的天线高出几个数量级,达到理论极限。相同尺寸的天线发射到基板中的低频(~100 MHZ)表面声波(SAW)激发纳米磁体中的磁化进动。通过 Villari 效应和进动磁化强度,以 SAW 频率在周围介质中辐射电磁波,从而产生一种新型天线。另一方面,高频 (~10 GHz) SAW 通过共振激发纳米磁体中的受限自旋波模式声子-磁振子耦合,这些自旋波然后通过磁振子-光子耦合以与声表面波相同的频率向周围介质辐射电磁波(光子)。所提出的研究将通过将表面等离子体激元引入模式混合来扩展该概念,以研究四向声子-等离子体激元-磁振子-光子耦合,这有望提高从声子到等离子体激元的模式转换效率。此外,据观察,如果声表面波传播的方向相对于纳米磁体的易轴发生变化,天线辐射方向图也会发生变化。该项目的目的是利用这一特性,通过改变 SAW 传播方向来电子控制辐射波束,以实现有源电子扫描天线 (AESA)。该奖项反映了 NSF 的法定使命,并通过评估认为值得支持利用基金会的智力优势和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Supriyo Bandyopadhyay其他文献

A Non-Volatile All-Spin Analog Matrix Multiplier: An Efficient Hardware Accelerator for Machine Learning
非易失性全自旋模拟矩阵乘法器:用于机器学习的高效硬件加速器
Quantum interference effects in transient electronic transport
瞬态电子传输中的量子干扰效应
  • DOI:
    10.1063/1.343690
  • 发表时间:
    1989-12-01
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    D. R. Poole;Supriyo Bandyopadhyay
  • 通讯作者:
    Supriyo Bandyopadhyay
The role of evanescent states in quantum transport through disordered mesoscopic structures
倏逝态在通过无序介观结构的量子传输中的作用
  • DOI:
    10.1016/0749-6036(91)90337-q
  • 发表时间:
    1991
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Supriyo Bandyopadhyay;M. Cahay;D. Berman;B. Nayfeh
  • 通讯作者:
    B. Nayfeh
Chapter 9 – Quantum Information Science from the Perspective of a Device and Materials Engineer
第 9 章 – 从设备和材料工程师的角度看量子信息科学
  • DOI:
    10.1016/b978-012507060-7/50014-3
  • 发表时间:
    2004-02-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Supriyo Bandyopadhyay
  • 通讯作者:
    Supriyo Bandyopadhyay
Magnetotunneling Junction Logic and Memory: Low-energy logic paradigms for the next decade and beyond.
磁隧道结逻辑和存储器:未来十年及以后的低能耗逻辑范例。
  • DOI:
    10.1109/mnano.2015.2472659
  • 发表时间:
    2015-09-23
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Supriyo Bandyopadhyay;J. Atulasimha
  • 通讯作者:
    J. Atulasimha

Supriyo Bandyopadhyay的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Supriyo Bandyopadhyay', 18)}}的其他基金

EAGER: Collaborative Research: Bayesian Reasoning Machine on a Magneto-Tunneling Junction Network
EAGER:协作研究:磁隧道结网络上的贝叶斯推理机
  • 批准号:
    2001255
  • 财政年份:
    2020
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
FET: Small: Collaborative Research: A Probability Correlator for All-Magnetic Probabilistic Computing: Theory and Experiment
FET:小型:协作研究:全磁概率计算的概率相关器:理论与实验
  • 批准号:
    2006843
  • 财政年份:
    2020
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Single nanowire spin-valve based infrared photodetctors and equality bit comparators
基于单纳米线自旋阀的红外光电探测器和等位比较器
  • 批准号:
    1609303
  • 财政年份:
    2016
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
NEB: Hybrid Spintronics and Straintronics: A New Technology for Ultra-Low Energy Computing and Signal Processing Beyond the Year 2020.
NEB:混合自旋电子学和应变电子学:2020 年以后超低能耗计算和信号处理的新技术。
  • 批准号:
    1124714
  • 财政年份:
    2011
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Single Spin Logic and Matrix Element Engineering: A New Nanoelectronic Computing Paradigm for Ultra Low Power Dissipation
单自旋逻辑和矩阵元件工程:超低功耗的新纳米电子计算范式
  • 批准号:
    0726373
  • 财政年份:
    2007
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative GOALI Proposal: Self-assembled Arrays of Rare-earth Sulfide Nanowires for Traveling Wave Tube Applications
合作 GOALI 提案:用于行波管应用的稀土硫化物纳米线自组装阵列
  • 批准号:
    0523966
  • 财政年份:
    2005
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
NIRT: Collective Computation with Self Assembled Quantum Dots, Nanodiodes and Nanowires: A Novel Paradigm for Nanoelectronics
NIRT:使用自组装量子点、纳米二极管和纳米线进行集体计算:纳米电子学的新范式
  • 批准号:
    0506710
  • 财政年份:
    2005
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
NER: Nanowire Non-Volatile Memory
NER:纳米线非易失性存储器
  • 批准号:
    0403494
  • 财政年份:
    2004
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
NER: Novel Electrochemically Self Assembled Nanowire Infrared Photodetectors
NER:新型电化学自组装纳米线红外光电探测器
  • 批准号:
    0206950
  • 财政年份:
    2002
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
SGER: A Self Assembled Spintronic Quantum Gate
SGER:自组装自旋电子量子门
  • 批准号:
    0089893
  • 财政年份:
    2001
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant

相似国自然基金

原子层材料中的旋磁自旋-谷电子学
  • 批准号:
    12374126
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
二维材料卷形、堆叠手性超结构的自旋电子学特性及其器件研究
  • 批准号:
    22375141
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于机器学习的二维非范德华自旋电子学材料的逆向设计
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于手性低维钙钛矿量子点自旋光电子学的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高效能亚铁磁自旋电子学材料和器件的基础研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

LIONESS - Light-controlled nanomagnetic and spintronic applications via magneto-thermoplasmonics
LIONESS - 通过磁热等离子体的光控纳米磁性和自旋电子应用
  • 批准号:
    MR/X033910/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Fellowship
Two-Dimensional Magnets in Spintronic Devices: Roles of Spin Fluctuations
自旋电子器件中的二维磁体:自旋涨落的作用
  • 批准号:
    2401267
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: CREST-PRP: Investigation and design of Molecular Spintronic photovoltaic devices via Raman Spectroscopy
博士后奖学金:CREST-PRP:通过拉曼光谱研究和设计分子自旋电子光伏器件
  • 批准号:
    2401024
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
DMREF: GOALI: Designing Materials for Next-generation Spintronic Devices
DMREF:GOALI:下一代自旋电子器件设计材料
  • 批准号:
    2324203
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
  • 批准号:
    2311295
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了