Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers

合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络

基本信息

  • 批准号:
    2311295
  • 负责人:
  • 金额:
    $ 79.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

This project addresses the critical need for verifying the safety and reliability of deep neural networks (DNNs) used in various applications, such as autonomous driving, aircraft control, and consumer products like smartphones. As the demand for computational power in artificial intelligence continues to grow, this project explores innovative domain-specific architectures (DSAs) such as quantum and probabilistic computing platforms as potential solutions to the verification problem. The research's significance lies in ensuring the correct functioning of DNNs when exposed to perturbations or attacks, with the goal of benefiting society by enhancing the safety and trustworthiness of Artificial Intelligence (AI)-driven technologies. This interdisciplinary project will not only advance the field of DNN verification and energy-efficient domain-specific computers but also support education and workforce development, increasing diversity and collaboration between academia and industry through targeted activities.The project aims to solve the exact DNN verification problem using quantum annealing and probabilistic computers, contrasting conventional classical computing approaches. The research contributions span device, circuit, system, and algorithm levels. At the device level, the project will improve the energy efficiency of existing probabilistic-bit (p-bit) designs by leveraging the voltage-controlled-magnetic anisotropy (VCMA) phenomenon. At the circuit and architecture level, the team will design array-level spintronic p-computers (i.e., computers powered by p-bits) and investigate the dynamics between the feedback circuitry and p-bits, complemented by scaled complementary metal-oxide semiconductor (CMOS) emulators (Field Programmable Gate Arrays - FPGAs) with more than 1000 p-bits. At the algorithm level, the project will focus on formulating the exact verification of a neural network as an Ising model problem, which will be solved using the developed hybrid classical/probabilistic computers. The project will create pathways for large-scale spintronic probabilistic computers and explore new research directions, such as applying the simulated quantum annealing algorithm for DNN verification. This work will lay the foundations for p-computers with more than one million p-bits, enabled by Magnetic Random Access Memory (MRAM) technology with far-reaching applications beyond verification, including machine learning and quantum simulation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目满足了验证各种应用(例如自动驾驶、飞机控制和智能手机等消费产品)中使用的深度神经网络 (DNN) 的安全性和可靠性的关键需求。随着人工智能对计算能力的需求不断增长,该项目探索创新的特定领域架构(DSA),例如量子和概率计算平台,作为验证问题的潜在解决方案。该研究的意义在于确保 DNN 在受到扰动或攻击时能够正确运行,目的是通过增强人工智能 (AI) 驱动技术的安全性和可信度来造福社会。这个跨学科项目不仅将推进 DNN 验证和节能领域特定计算机领域的发展,还将支持教育和劳动力发展,通过有针对性的活动增加学术界和工业界之间的多样性和协作。该项目旨在解决确切的 DNN 验证问题使用量子退火和概率计算机,对比传统的经典计算方法。研究贡献涵盖器件、电路、系统和算法层面。在器件层面,该项目将利用压控磁各向异性(VCMA)现象来提高现有概率位(p位)设计的能效。在电路和架构层面,该团队将设计阵列级自旋电子 p 计算机(即由 p 位供电的计算机),并研究反馈电路和 p 位之间的动态,并辅以按比例缩放的互补金属氧化物半导体( CMOS)仿真器(现场可编程门阵列 - FPGA)具有超过 1000 p 位。在算法层面,该项目将专注于将神经网络的精确验证制定为伊辛模型问题,该问题将使用开发的混合经典/概率计算机来解决。该项目将为大规模自旋电子概率计算机创建途径,并探索新的研究方向,例如应用模拟量子退火算法进行 DNN 验证。这项工作将为具有超过 100 万 p 位的 p 计算机奠定基础,通过磁随机存取存储器 (MRAM) 技术实现超越验证的深远应用,包括机器学习和量子模拟。该奖项反映了 NSF 的法定使命通过使用基金会的智力优点和更广泛的影响审查标准进行评估,并被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kerem Camsari其他文献

Kerem Camsari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kerem Camsari', 18)}}的其他基金

CAREER: Physics-inspired Machine Learning with Sparse and Asynchronous p-bits
职业:利用稀疏和异步 p 位进行物理启发的机器学习
  • 批准号:
    2237357
  • 财政年份:
    2023
  • 资助金额:
    $ 79.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: FET: Medium: Probabilistic Computing Through Integrated Nano-devices - A Device to Systems Approach
合作研究:FET:中:通过集成纳米设备进行概率计算 - 设备到系统的方法
  • 批准号:
    2106260
  • 财政年份:
    2021
  • 资助金额:
    $ 79.95万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
  • 批准号:
    12302200
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
  • 批准号:
    52377175
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
超高频同步整流DC-DC变换器效率优化关键技术研究
  • 批准号:
    62301375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
  • 批准号:
    82302939
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
超高频光声频谱渐进式调制下的光声显微成像轴向分辨率提升研究
  • 批准号:
    62265011
  • 批准年份:
    2022
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 79.95万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 79.95万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 79.95万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 79.95万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 79.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了