LIONESS - Light-controlled nanomagnetic and spintronic applications via magneto-thermoplasmonics

LIONESS - 通过磁热等离子体的光控纳米磁性和自旋电子应用

基本信息

  • 批准号:
    MR/X033910/1
  • 负责人:
  • 金额:
    $ 159.79万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Major breakthroughs in information technologies over the past 50 years have relied heavily on knowledge of electronic processes, utilisation of magnetic states (such as giant magnetoresistance read heads for hard drives) and usage of lasers (e.g., CDs and fibre optics). Today, information technologies are ubiquitous, allowing us to solve more and more complex computational problems than ever.Nowadays, a key concern is to improve the efficiency of digital devices, coupled with miniaturisation and increased processing speed, as the increase in computational power and data density comes at high costs with respect to energy consumption. This is made worse by the fact that - rather than being used in an effective way - a sizeable fraction of electricity used to drive modern chips gets dissipated as heat, which can have negative effects on device performance and data retention.However, heat itself is not bad, and particularly interesting phenomena potentially useful for future computational devices, occur in situations where the temperature distribution is not uniform, e.g., if one side of a device is hot while its opposite side is cold. In combination with magnetic materials, such heat differentials can be used to (i) generate electricity, (ii) move spin structures that encode information bits, or (iii) enhance unconventional computing schemes by their intrinsic stochasticity. To date, our experimental understanding of these effects, and their effective integration into devices is hampered by the fact that contemporary methods to create heat differentials lack the flexibility to be suitable for miniaturised technological applications, as they are slow and have large spatial extension, can be prone to damage, and - most importantly - are not reconfigurable.Taking inspiration from the field of photonics and functional magnetic materials, here I will implement a hybrid approach for novel magneto-thermoplasmonic devices: The main objective of the Fellowship is to develop a novel experimental platform enabling fast, precise, and reconfigurable optical control of nano- to microscale temperature distributions by light for key magnetic and spintronic applications. Specific aims are to (i) create fast and optically reconfigurable spin current generators, (ii) experimentally quantify the thermally driven motion of spin textures to further our understanding of fundamental phenomena, and (iii) use light as a flexible and high-bandwidth input for unconventional nanomagnetic computation schemes.The research outputs generated with the Fellowship will tackle fundamental questions regarding non-equilibrium behaviour of magnetic materials, and the newly developed magneto-thermoplasmonic platform will generate impact on the areas of spintronics, optically reconfigurable metamaterials, and energy.
过去 50 年信息技术的重大突破在很大程度上依赖于电子过程的知识、磁态的利用(例如硬盘驱动器的巨磁阻读取头)和激光的使用(例如 CD 和光纤)。如今,信息技术无处不在,使我们能够解决比以往更多、更复杂的计算问题。如今,随着计算能力和数据的增加,一个关键问题是提高数字设备的效率,再加上小型化和处理速度的提高。密度的提高带来的能源消耗成本很高。更糟糕的是,用于驱动现代芯片的相当大一部分电力并没有以有效的方式使用,而是以热量的形式消散,这可能对设备性能和数据保留产生负面影响。然而,热量本身在温度分布不均匀的情况下,例如,如果设备的一侧是热的,而其另一侧是冷的,则可能会出现对未来计算设备有用的特别有趣的现象。与磁性材料结合,这种热差可用于(i)发电,(ii)移动编码信息位的自旋结构,或(iii)通过其固有的随机性增强非常规计算方案。迄今为止,我们对这些效应的实验理解以及它们与设备的有效集成受到以下事实的阻碍:当代产生热差的方法缺乏适合小型化技术应用的灵活性,因为它们速度缓慢且具有较大的空间延伸,可以容易损坏,而且最重要的是不可重新配置。从光子学和功能磁性材料领域汲取灵感,在这里我将为新型磁热等离子设备实施一种混合方法:该奖学金的主要目标是开发一种小说该实验平台能够通过光对关键磁和自旋电子应用的纳米到微米级温度分布进行快速、精确和可重构的光学控制。具体目标是(i)创建快速且光学可重构的自旋电流发生器,(ii)通过实验量化自旋纹理的热驱动运动,以进一步加深我们对基本现象的理解,以及(iii)使用光作为灵活的高带宽输入该奖学金产生的研究成果将解决有关磁性材料非平衡行为的基本问题,新开发的磁热等离子平台将对以下领域产生影响自旋电子学、光学可重构超材料和能源。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Naëmi Leo其他文献

Direct observation of spin correlations in an artificial triangular lattice Ising spin system with grazing-incidence small-angle neutron scattering
  • DOI:
    10.1039/d1nh00043h
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Petai Pip;Artur Glavic;Sandra Helen Skjærvø;Anja Weber;Andrew Smerald;Kirill Zhernenkov;Naëmi Leo;Frédéric Mila;Laetitia Philippe;Laura J. Heyderman
  • 通讯作者:
    Laura J. Heyderman
Selective and fast plasmon-assisted photo-heating of nanomagnets
  • DOI:
    10.1039/c9nr01628g
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Matteo Pancaldi;Naëmi Leo;Paolo Vavassori
  • 通讯作者:
    Paolo Vavassori
Quantitative Ultrafast Magnetoacoustics at Magnetic Metasurfaces.
磁性超表面的定量超快磁声学。
  • DOI:
    10.1021/acs.nanolett.3c02336
  • 发表时间:
    2023-10-11
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Ale;r Alekhin;r;A. M. Lomonosov;Naëmi Leo;M. Ludwig;Vladimir S. Vlasov;Leonid Kotov;A. Leitenstorfer;Peter Gaal;P. Vavassori;V. Temnov
  • 通讯作者:
    V. Temnov

Naëmi Leo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

光响应纳米纤维药物控释系统治疗真菌性角膜炎的研究
  • 批准号:
    82301166
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
光晶格中自旋轨道耦合的玻色爱因斯坦凝聚
  • 批准号:
    12374247
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于中间带工程的非铅锑基钙钛矿薄膜制备及室内光伏性能研究
  • 批准号:
    12304043
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于光增强新型类皮肤有机半导体复合器件的接近探测研究
  • 批准号:
    62375046
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
纤维状凝胶光电极的一体化纺丝成型及其在深脑部光遗传应用研究
  • 批准号:
    52303033
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Materials that unlock light-controlled specific separations to enable sustainable desalination (LUCENT)
解锁光控特定分离以实现可持续海水淡化的材料(LUCENT)
  • 批准号:
    EP/X042286/1
  • 财政年份:
    2024
  • 资助金额:
    $ 159.79万
  • 项目类别:
    Fellowship
The Breast Cancer and the Workforce Communication App: A randomized controlled trial of an English/Spanish intervention to promote long-term job retention
乳腺癌和劳动力沟通应用程序:一项针对促进长期工作保留的英语/西班牙语干预措施的随机对照试验
  • 批准号:
    10443450
  • 财政年份:
    2023
  • 资助金额:
    $ 159.79万
  • 项目类别:
ExpandQISE: Track 1: Light-controlled magnetism in Floquet-Bloch systems
ExpandQISE:轨道 1:Floquet-Bloch 系统中的光控磁性
  • 批准号:
    2329006
  • 财政年份:
    2023
  • 资助金额:
    $ 159.79万
  • 项目类别:
    Standard Grant
Multi-site feasibility and acceptability of a faith-based mind-body intervention in Black adults
对黑人成年人进行基于信仰的身心干预的多地点可行性和可接受性
  • 批准号:
    10650588
  • 财政年份:
    2023
  • 资助金额:
    $ 159.79万
  • 项目类别:
The Role of Outpatient Diuretic Therapy in Bronchopulmonary Dysplasia
门诊利尿疗法在支气管肺发育不良中的作用
  • 批准号:
    10663469
  • 财政年份:
    2023
  • 资助金额:
    $ 159.79万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了