Collaborative Research: EAGER: Quantum Manufacturing: Vertical Coupling and Cross-Talk Shielding of Superconducting Quantum Devices
合作研究:EAGER:量子制造:超导量子器件的垂直耦合和串扰屏蔽
基本信息
- 批准号:2240245
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
One of the main challenges facing the development of next-generation superconducting quantum devices is high-density three-dimensional (3D) integration of large numbers of individual superconducting quantum bits (qubits). While superconducting quantum devices have reached a high level of maturity as a technology, coupling of qubits to one another to enable large-scale circuits for practical computation still remains a challenge. This project seeks to address this challenge by exploring a new approach for coupling superconducting circuits using a thin electromagnetic coupler interposed between qubit layers. The proposed work will be based on an innovative integration of quantum elements that are by themselves well-established in the PI’s and Co-PIs’ labs. Successful performance of the proposed work will expand our knowledge of quantum states in superconducting devices and will result in the development of improved quantum manufacturing approaches of broad interest for practical quantum information processing technologies. The team is committed to mentoring graduate and undergraduate students and to broadening the participation of under-represented groups in quantum engineering. In addition, the PIs will be involved in outreach efforts aiming to raise awareness about physics, materials science, and mathematics to school students. A substantial part of this effort will reach out to school students from the local Native American community. Developing new approaches to 3D integration of superconducting qubits is of crucial relevance for realizing high-depth circuits suitable for running practically relevant algorithms. Current coupling techniques for transmon qubits typically involve relatively large (millimeter-sized) coplanar resonators, while for phase qubits a variety of different capacitive or inductive coupling approaches are being investigated. No optimal solution has yet been identified for vertical expansion. Existing approaches are typically planar, due in part to limitations stemming from the technology used to create the qubit Josephson junctions (JJs) typically angle-deposition and controlled oxidation of the tunnel barrier. This results in low spatial densities for JJ circuits and coherence-limiting cross-talk. In order to address this challenge, the PIs will fabricate high-quality JJ array chips and link them vertically via waveguide arrays operating in the microwave frequencies. While each enabling component and manufacturing method has been demonstrated, their integration is a daunting task with high-risk and the co-PIs are uniquely positioned to tackle this challenge. Intellectual significance: the team’s vision of full-3D integration of JJs and cross-talk shielding is in its early stages and untested experimentally, yet presents a potentially transformative approach to solve, in a single stroke, the triple challenge of efficient superconducting circuit coupling, high-density 3D vertical integration, and cross-talk mitigation. Additionally, the project will train graduate students in state-of-the art quantum device nanofabrication, advanced materials growth, and quantum transport. The PIs will also develop courses on quantum information sciences aimed at undergraduates and quantum engineering/manufacturing aimed at graduate students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
下一代超导量子器件发展面临的主要挑战之一是大量单个超导量子位(量子位)的高密度三维(3D)集成,而超导量子器件已经达到了高度成熟度。作为一项技术,将量子位相互耦合以实现大规模电路进行实际计算仍然是一个挑战,该项目旨在通过探索一种使用薄层耦合超导电路的新方法来解决这一挑战。拟议的工作将基于量子元素的创新集成,这些量子元素本身已在 PI 和 Co-PI 实验室中得到广泛应用,该工作的成功实施将扩展我们对量子态的了解。该团队致力于指导研究生和本科生,并扩大量子领域代表性不足的群体的参与。此外,PI 将参与旨在提高学校学生对物理、材料科学和数学的认识的活动,其中很大一部分将惠及当地美洲原住民社区的学生。超导量子位的 3D 集成方法对于实现适合运行实际相关算法的高深度电路至关重要。目前,传输量子位的耦合技术通常涉及相对较大(毫米级)的共面谐振器,而相位谐振器则具有重要意义。目前正在研究各种不同的电容或电感耦合方法,现有方法通常是平面的,部分原因是用于创建量子位约瑟夫森结 (JJ) 的技术的限制。通常采用隧道势垒的角度沉积和受控氧化,这会导致 JJ 电路的空间密度较低,并会限制相干性串扰。将制造高质量的 JJ 阵列芯片,并通过在微波频率下运行的波导阵列将它们垂直连接起来。学术意义:该团队对 JJ 和串扰屏蔽的全 3D 集成的愿景尚处于早期阶段,未经实验测试,但提出了一种潜在的变革性方法,可以一次性解决三重问题。此外,该项目还将在最先进的量子器件纳米制造、先进材料生长和量子传输方面对研究生进行培训。还开发针对本科生的量子信息科学课程和针对研究生的量子工程/制造课程。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sang-Hyun Oh其他文献
Surface plasmon enhanced spectroscopies and time and space resolved methods: general discussion
- DOI:
10.1039/c5fd90023a - 发表时间:
2015-05 - 期刊:
- 影响因子:3.4
- 作者:
Jeremy Baumberg;Michael Nielsen;Sergey Bozhevolnyi;Viktor Podolskiy;Thomas Ebbesen;Kaiqiang Lin;Alexei A. Kornyshev;Jacob Khurgin;James Hutchison;Katarzyna Matczyszyn;Jino George;Emiliano Cortes;James T. Hugall;Adi Salomon;Paul Dawson;Olivier Martin;Santhosh Kotni;F. Javier García de Abajo;Michael Flatté;Martin Moskovits;Duncan Graham;Stefan Maier;Masayuki Futamata;Sang-Hyun Oh;Javier Aizpurua;Zachary Schultz;Riccardo Sapienza - 通讯作者:
Riccardo Sapienza
High-density metallic nanogap arrays for the sensitive detection of single-walled carbon nanotube thin films
- DOI:
10.1039/c4fd00233d - 发表时间:
2015-03 - 期刊:
- 影响因子:3.4
- 作者:
Hyeong-Ryeol Park;Seon Namgung;Xiaoshu Chen;Sang-Hyun Oh - 通讯作者:
Sang-Hyun Oh
Bandgap engineering of two-dimensional semiconductor materials
二维半导体材料的带隙工程
- DOI:
10.1038/s41699-020-00162-4 - 发表时间:
2020 - 期刊:
- 影响因子:9.7
- 作者:
A. Chaves;J. G. Azadani;Hussain Alsalman;D. R. da Costa;R. Frisenda;A. J. Chaves;Seung Hyun Song;Y. D. Kim;Daowei He;Jiadong Zhou;A. Castellanos-Gomez;F. M. Peeters;Zheng Liu;C. L. Hinkle;Sang-Hyun Oh;Peide D. Ye;Steven J. Koester;Young Hee Lee;Ph. Avouri - 通讯作者:
Ph. Avouri
Fine tuning of nanopipettes using atomic layer deposition for single molecule sensing
- DOI:
10.1039/c5an01001b - 发表时间:
2015-06 - 期刊:
- 影响因子:4.2
- 作者:
Jasmine Y. Y. Sze;Shailabh Kumar;Aleksandar P. Ivanov;Sang-Hyun Oh;Joshua B. Edel - 通讯作者:
Joshua B. Edel
Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature
- DOI:
10.1039/c5nr04208a - 发表时间:
2015-09 - 期刊:
- 影响因子:6.7
- 作者:
Juliane Junesch;Gustav Emilsson;Kunli Xiong;Shailabh Kumar;Takumi Sannomiya;Hudson Pace;Janos Vörös;Sang-Hyun Oh;Marta Bally;Andreas B. Dahlin - 通讯作者:
Andreas B. Dahlin
Sang-Hyun Oh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sang-Hyun Oh', 18)}}的其他基金
Collaborative Research: Waveguide-Integrated Graphene Nano-tweezERs (WIGNER) for rapid sorting and analysis of nanovesicles and viruses
合作研究:用于快速分选和分析纳米囊泡和病毒的波导集成石墨烯纳米镊子(WIGNER)
- 批准号:
2227460 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Waveguide-Integrated Graphene Nano-tweezERs (WIGNER) for rapid sorting and analysis of nanovesicles and viruses
合作研究:用于快速分选和分析纳米囊泡和病毒的波导集成石墨烯纳米镊子(WIGNER)
- 批准号:
2227460 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
OP: Super-Coupling Nanoplasmonics with Silicon Photonics for Mid-Infrared Biosensing
OP:超耦合纳米等离子体与硅光子学用于中红外生物传感
- 批准号:
1809240 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Atomic Layer Lithography for Integrated Optoelectronic Devices with Sub-10-nm Critical Dimensions
用于具有亚 10 纳米临界尺寸的集成光电器件的原子层光刻
- 批准号:
1610333 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Nanomanufacturing and System Integration of Multi-Functional Metallic Pyramidal Probes
多功能金属金字塔探针的纳米制造和系统集成
- 批准号:
1363334 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Enhanced efficiency in organic photovoltaic cells using engineered plasmonic nanostructures
使用工程等离子体纳米结构提高有机光伏电池的效率
- 批准号:
1067681 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: IDBR: Ultrasmooth Patterned Metals for Membrane Biology
职业:IDBR:用于膜生物学的超光滑图案金属
- 批准号:
1054191 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: IDBR: Nanopore optical biosensor development for analyzing membrane protein interactions
合作研究:IDBR:用于分析膜蛋白相互作用的纳米孔光学生物传感器开发
- 批准号:
0964216 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
- 批准号:82300430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
- 批准号:62371157
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向开放域对话系统信息获取的准确性研究
- 批准号:62376067
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant