CAREER: IDBR: Ultrasmooth Patterned Metals for Membrane Biology
职业:IDBR:用于膜生物学的超光滑图案金属
基本信息
- 批准号:1054191
- 负责人:
- 金额:$ 59.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-04-01 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cell membranes are a complex mosaic of different lipids, with cholesterol, sphingolipids and membrane proteins forming nanoscale domains called lipid rafts. Lipid rafts transiently compartmentalize membrane constituents, which in turn mediate cellular functions in space and time. In order to quantitatively investigate the formation, morphology and signal transduction mechanisms mediated by lipid rafts and proteins integrated therein, they must be probed in artificial nano-environments that closely resemble real cell membranes. Analytical instruments that integrate lipid membranes with engineered solid-state sensors that can better mimic natural cellular environments will therefore offer deeper insights into important in vivo reactions and processes.The proposed platform will integrate soft lipid matter with the native sensing capability of nanoporous metallic films. Namely, surface plasmon resonance (SPR) and electrochemical sensing will be used to probe the biological processes mediated by lipid rafts and membrane proteins. However, noble metals such as gold or silver required for SPR have typically not been amenable to large-area, low-cost patterning at nanometer-scale resolution. To overcome this challenge, template-stripping methods will be used for reproducible high-throughput fabrication of ultrasmooth nanoporous metallic films that will be used as a multi-functional platform combining nanofluidics, optical detection, spectroscopy, and electrochemical sensing. The development of a membrane biosensing platform capable of molecular binding and transport assays will provide new tools to probe the dynamic heterogeneity of cellular membranes and the fundamental life processes they enable. Overall, disseminating these instruments will enable biologists to control, image, and quantitatively analyze lipid membranes and their constituents, potentially down to the single-molecule level, using precisely engineered biomimetic nano-environments.For broader outreach, the PI will organize "Sit with a Scientist" sessions and build an interactive Activity Station at the Science Museum of Minnesota during the one week-long NanoDays event in April of each year. The PI's exhibition booth at the museum will feature the theme of "Macro- to Microfluidics", with on-site demos of microfluidic devices for K-12 students. Graduate and undergraduate students associated with the project will gain interdisciplinary training ranging from nanofabrication and optics to chemistry and cellular membranes. Women and underrepresented minorities will be given opportunities to experience nanofabrication through NSF REU programs. The PI's new graduate course on biological instrumentation will integrate his research and education through theoretical lectures and weekly hands-on lab sessions to teach the construction and operation of membrane biosensors. New instruments and technology will be disseminated to the research community through an already active biannual, two-day bioMEMs short course. The process of making smooth patterned gold films, integration with microfluidics, lipid membrane formation, followed by SPR and electrochemical sensing will be demonstrated, allowing other researchers to duplicate the chip fabrication and instrument buildup.
细胞膜是不同脂质的复杂镶嵌体,胆固醇、鞘脂和膜蛋白形成称为脂筏的纳米级结构域。脂筏短暂地分隔膜成分,进而介导空间和时间上的细胞功能。为了定量研究脂筏和其中整合的蛋白质介导的形成、形态和信号转导机制,必须在与真实细胞膜非常相似的人工纳米环境中对其进行探测。因此,将脂质膜与能够更好地模拟自然细胞环境的工程固态传感器集成的分析仪器将为重要的体内反应和过程提供更深入的见解。所提出的平台将把软脂质物质与纳米多孔金属薄膜的天然传感能力集成起来。即,表面等离子共振(SPR)和电化学传感将用于探测脂筏和膜蛋白介导的生物过程。然而,SPR 所需的金或银等贵金属通常不适合在纳米级分辨率下进行大面积、低成本的图案化。为了克服这一挑战,模板剥离方法将用于超光滑纳米多孔金属薄膜的可重复高通量制造,该薄膜将用作结合纳米流体、光学检测、光谱学和电化学传感的多功能平台。能够进行分子结合和转运分析的膜生物传感平台的开发将为探测细胞膜的动态异质性及其所支持的基本生命过程提供新的工具。总体而言,传播这些仪器将使生物学家能够使用精确设计的仿生纳米环境来控制、成像和定量分析脂质膜及其成分,可能深入到单分子水平。为了更广泛的推广,PI 将组织“与每年四月为期一周的 NanoDays 活动期间,我们都会在明尼苏达州科学博物馆举办“a Scientist”课程并建立一个互动活动站。 PI在博物馆的展位将以“宏观到微流控”为主题,为K-12学生现场演示微流控装置。与该项目相关的研究生和本科生将获得从纳米制造和光学到化学和细胞膜的跨学科培训。女性和代表性不足的少数群体将有机会通过 NSF REU 项目体验纳米制造。 PI的新生物仪器研究生课程将通过理论讲座和每周的实验室实践课程将他的研究和教育结合起来,教授膜生物传感器的构建和操作。新仪器和技术将通过已经活跃的每两年一次、为期两天的生物 MEM 短期课程向研究界传播。将演示制作光滑图案金膜、与微流体集成、脂质膜形成、随后进行 SPR 和电化学传感的过程,使其他研究人员能够复制芯片制造和仪器构建。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sang-Hyun Oh其他文献
Surface plasmon enhanced spectroscopies and time and space resolved methods: general discussion
- DOI:
10.1039/c5fd90023a - 发表时间:
2015-05 - 期刊:
- 影响因子:3.4
- 作者:
Jeremy Baumberg;Michael Nielsen;Sergey Bozhevolnyi;Viktor Podolskiy;Thomas Ebbesen;Kaiqiang Lin;Alexei A. Kornyshev;Jacob Khurgin;James Hutchison;Katarzyna Matczyszyn;Jino George;Emiliano Cortes;James T. Hugall;Adi Salomon;Paul Dawson;Olivier Martin;Santhosh Kotni;F. Javier García de Abajo;Michael Flatté;Martin Moskovits;Duncan Graham;Stefan Maier;Masayuki Futamata;Sang-Hyun Oh;Javier Aizpurua;Zachary Schultz;Riccardo Sapienza - 通讯作者:
Riccardo Sapienza
High-density metallic nanogap arrays for the sensitive detection of single-walled carbon nanotube thin films
- DOI:
10.1039/c4fd00233d - 发表时间:
2015-03 - 期刊:
- 影响因子:3.4
- 作者:
Hyeong-Ryeol Park;Seon Namgung;Xiaoshu Chen;Sang-Hyun Oh - 通讯作者:
Sang-Hyun Oh
Bandgap engineering of two-dimensional semiconductor materials
二维半导体材料的带隙工程
- DOI:
10.1038/s41699-020-00162-4 - 发表时间:
2020 - 期刊:
- 影响因子:9.7
- 作者:
A. Chaves;J. G. Azadani;Hussain Alsalman;D. R. da Costa;R. Frisenda;A. J. Chaves;Seung Hyun Song;Y. D. Kim;Daowei He;Jiadong Zhou;A. Castellanos-Gomez;F. M. Peeters;Zheng Liu;C. L. Hinkle;Sang-Hyun Oh;Peide D. Ye;Steven J. Koester;Young Hee Lee;Ph. Avouri - 通讯作者:
Ph. Avouri
Fine tuning of nanopipettes using atomic layer deposition for single molecule sensing
- DOI:
10.1039/c5an01001b - 发表时间:
2015-06 - 期刊:
- 影响因子:4.2
- 作者:
Jasmine Y. Y. Sze;Shailabh Kumar;Aleksandar P. Ivanov;Sang-Hyun Oh;Joshua B. Edel - 通讯作者:
Joshua B. Edel
Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature
- DOI:
10.1039/c5nr04208a - 发表时间:
2015-09 - 期刊:
- 影响因子:6.7
- 作者:
Juliane Junesch;Gustav Emilsson;Kunli Xiong;Shailabh Kumar;Takumi Sannomiya;Hudson Pace;Janos Vörös;Sang-Hyun Oh;Marta Bally;Andreas B. Dahlin - 通讯作者:
Andreas B. Dahlin
Sang-Hyun Oh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sang-Hyun Oh', 18)}}的其他基金
Collaborative Research: EAGER: Quantum Manufacturing: Vertical Coupling and Cross-Talk Shielding of Superconducting Quantum Devices
合作研究:EAGER:量子制造:超导量子器件的垂直耦合和串扰屏蔽
- 批准号:
2240245 - 财政年份:2023
- 资助金额:
$ 59.71万 - 项目类别:
Standard Grant
Collaborative Research: Waveguide-Integrated Graphene Nano-tweezERs (WIGNER) for rapid sorting and analysis of nanovesicles and viruses
合作研究:用于快速分选和分析纳米囊泡和病毒的波导集成石墨烯纳米镊子(WIGNER)
- 批准号:
2227460 - 财政年份:2022
- 资助金额:
$ 59.71万 - 项目类别:
Standard Grant
Collaborative Research: Waveguide-Integrated Graphene Nano-tweezERs (WIGNER) for rapid sorting and analysis of nanovesicles and viruses
合作研究:用于快速分选和分析纳米囊泡和病毒的波导集成石墨烯纳米镊子(WIGNER)
- 批准号:
2227460 - 财政年份:2022
- 资助金额:
$ 59.71万 - 项目类别:
Standard Grant
OP: Super-Coupling Nanoplasmonics with Silicon Photonics for Mid-Infrared Biosensing
OP:超耦合纳米等离子体与硅光子学用于中红外生物传感
- 批准号:
1809240 - 财政年份:2018
- 资助金额:
$ 59.71万 - 项目类别:
Standard Grant
Atomic Layer Lithography for Integrated Optoelectronic Devices with Sub-10-nm Critical Dimensions
用于具有亚 10 纳米临界尺寸的集成光电器件的原子层光刻
- 批准号:
1610333 - 财政年份:2016
- 资助金额:
$ 59.71万 - 项目类别:
Standard Grant
Nanomanufacturing and System Integration of Multi-Functional Metallic Pyramidal Probes
多功能金属金字塔探针的纳米制造和系统集成
- 批准号:
1363334 - 财政年份:2014
- 资助金额:
$ 59.71万 - 项目类别:
Standard Grant
Enhanced efficiency in organic photovoltaic cells using engineered plasmonic nanostructures
使用工程等离子体纳米结构提高有机光伏电池的效率
- 批准号:
1067681 - 财政年份:2011
- 资助金额:
$ 59.71万 - 项目类别:
Standard Grant
Collaborative Research: IDBR: Nanopore optical biosensor development for analyzing membrane protein interactions
合作研究:IDBR:用于分析膜蛋白相互作用的纳米孔光学生物传感器开发
- 批准号:
0964216 - 财政年份:2010
- 资助金额:
$ 59.71万 - 项目类别:
Continuing Grant
相似海外基金
IDBR: TYPE A - Development of an In situ Single-cell Mass Spectrometer for Mapping Small-molecule Expression in the Developing Embryo
IDBR:A 型 - 开发用于绘制发育中胚胎中小分子表达图谱的原位单细胞质谱仪
- 批准号:
1826932 - 财政年份:2018
- 资助金额:
$ 59.71万 - 项目类别:
Continuing Grant
IDBR: TYPE A, Online Liquid Chromatography - Surface Enhanced Raman Detection for Metabolic Profiling
IDBR:A 型,在线液相色谱 - 用于代谢分析的表面增强拉曼检测
- 批准号:
1830153 - 财政年份:2018
- 资助金额:
$ 59.71万 - 项目类别:
Continuing Grant
IDBR TYPE A: Definitive Chemical Analysis of Microbial Volatile Mixtures and Chemical Intermediates via Microwave Spectroscopy
IDBR A 型:通过微波光谱法对微生物挥发性混合物和化学中间体进行确定性化学分析
- 批准号:
1832846 - 财政年份:2017
- 资助金额:
$ 59.71万 - 项目类别:
Standard Grant
IDBR TYPE A: Definitive Chemical Analysis of Microbial Volatile Mixtures and Chemical Intermediates via Microwave Spectroscopy
IDBR A 型:通过微波光谱法对微生物挥发性混合物和化学中间体进行确定性化学分析
- 批准号:
1832846 - 财政年份:2017
- 资助金额:
$ 59.71万 - 项目类别:
Standard Grant
Collaborative Research: IDBR Type A: QSTORM-AO - Wavefront-shaping light-sheet microscopy with photoswitchable quantum dots for superresolution imaging in thick tissue
合作研究:IDBR A 型:QSTORM-AO - 具有光控量子点的波前整形光片显微镜,用于厚组织中的超分辨率成像
- 批准号:
1555576 - 财政年份:2016
- 资助金额:
$ 59.71万 - 项目类别:
Continuing Grant