Atomic Layer Lithography for Integrated Optoelectronic Devices with Sub-10-nm Critical Dimensions

用于具有亚 10 纳米临界尺寸的集成光电器件的原子层光刻

基本信息

  • 批准号:
    1610333
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

Nontechnical description: In this project the PI will use an advanced nanofabrication technique called atomic layer lithography to create tiny gaps between metallic electrodes. The gaps can be as small as 1 nanometer across and centimeters long with nearly any geometry, including linear, curved or closed loops. Metallic nanogaps with these dimensions have unique electrical and optical properties. When an AC voltage is applied across the nanogaps, a phenomenon called dielectrophoresis is observed. Dielectrophoresis results in forces that can attract or repel small particles from the gaps. In this way the gaps can be used to trap or sort small biologically-relevant particles for further analysis with optical or electrical techniques. By shrinking the gap between electrodes to nanoscale dimensions, the dielectrophoretic forces can be orders of magnitude larger than with electrodes fabricated with traditional techniques. Additionally, these gaps can be integrated into nanoscale transistors that incorporated 2-dimensional materials like graphene. These nanogaps interact with electromagnetic radiation ranging from visible/infrared light to microwave radiation. The nanogaps strongly amplify optically-generated electromagnetic fields, which can be exploited for sensing interactions between molecules in solution and particles trapped along the gap. By creating nanogaps that can simultaneously trap biological particles and probe them with nanogap-enhanced optical techniques, this project will enable ultra-sensitive chemical analysis. This project also includes educational and outreach components, such as the training of high school, undergraduate and graduate students. The PI also maintains a relationship with the Science Museum of Minnesota and leads an annual activity station during the museum's NanoDays on the impacts of nanotechnology on everyday life. Technical description:The goal of this project is to design, fabricate, and characterize new devices with sub-10-nm electrically controllable metallic gaps that will enable a series of novel optical and electrical experiments. Atomic layer deposition will be utilized as a lithographic patterning method - atomic layer lithography - to produce electrically contacted metallic gaps with atomic-scale thickness resolution. Independent control of the gap thickness and contour shape allows for broadband and precise tuning of the electromagnetic resonance. The integration of electrical interconnects will enable new functionality of the nanogaps and a platform to demonstrate their potential applications. The nanogap devices will be integrated with 2D materials, turning the metal on either side of the gap into source and drain contacts of field-effect transistors and photodetectors. These example experiments will serve to entice experimental experts to utilize atomic layer lithography technique and also use nanogaps as a platform for their research. Intellectual Merit: To date, most researchers rely on electron-beam lithography to create nanogap structures. While suitable for proof-of-concept experiments, these techniques make integration into more complex devices difficult, since they are places where precisely defined geometries and patterns are needed. The intellectual merit of the proposed research is that the PI will transform atomic layer deposition as a top-down patterning method, thereby converting its precise thickness control into lateral patterning resolution without using electron-beam lithography. Electrical interconnects will be integrated to expand the capabilities of the devices. Example experiments in optoelectronics and nanoparticle trapping have the potential to make a large impact on the respective fields. Broader Impacts: If successful, the proposed atomic layer lithography technique will allow researchers the ability to create ultra-long single-digit nanogaps with built-in electrodes Therefore, this proposal has the potential to transform the fields of 2D materials optoelectronics. Graduate and undergraduate students will gain experience in nanofabrication and characterization. For K-12 outreach, the PI's team will build an interactive Activity Station at the Science Museum of Minnesota.
非技术描述:在这个项目中,PI 将使用一种称为原子层光刻的先进纳米加工技术来在金属电极之间创建微小间隙。间隙可以小至 1 纳米宽、1 厘米长,几乎可以是任何几何形状,包括线性、弯曲或闭环。具有这些尺寸的金属纳米间隙具有独特的电学和光学特性。当在纳米间隙上施加交流电压时,会观察到一种称为介电泳的现象。介电泳产生的力可以吸引或排斥间隙中的小颗粒。通过这种方式,间隙可用于捕获或分类小的生物相关颗粒,以便通过光学或电学技术进行进一步分析。通过将电极之间的间隙缩小到纳米级尺寸,介电泳力可以比用传统技术制造的电极大几个数量级。此外,这些间隙可以集成到包含石墨烯等二维材料的纳米级晶体管中。这些纳米间隙与从可见光/红外光到微波辐射的电磁辐射相互作用。纳米间隙强烈放大光产生的电磁场,可用于传感溶液中的分子与沿间隙捕获的粒子之间的相互作用。通过创建可以同时捕获生物颗粒并使用纳米间隙增强光学技术对其进行探测的纳米间隙,该项目将实现超灵敏的化学分析。该项目还包括教育和外展部分,例如对高中生、本科生和研究生的培训。该 PI 还与明尼苏达科学博物馆保持着合作关系,并在博物馆的纳米日期间领导一个年度活动站,探讨纳米技术对日常生活的影响。 技术描述:该项目的目标是设计、制造和表征具有亚 10 nm 电控金属间隙的新器件,从而实现一系列新颖的光学和电学实验。原子层沉积将用作光刻图案化方法(原子层光刻),以产生具有原子级厚度分辨率的电接触金属间隙。间隙厚度和轮廓形状的独立控制可以实现电磁共振的宽带和精确调谐。电气互连的集成将使纳米间隙具有新的功能,并提供一个展示其潜在应用的平台。纳米间隙器件将与二维材料集成,将间隙两侧的金属转变为场效应晶体管和光电探测器的源极和漏极触点。这些示例实验将有助于吸引实验专家利用原子层光刻技术,并使用纳米间隙作为他们的研究平台。智力优势:迄今为止,大多数研究人员依靠电子束光刻来创建纳米间隙结构。虽然这些技术适用于概念验证实验,但它们使得集成到更复杂的设备中变得困难,因为它们是需要精确定义的几何形状和图案的地方。该研究的智力价值在于PI将把原子层沉积转变为一种自上而下的图案化方法,从而将其精确的厚度控制转化为横向图案化分辨率,而无需使用电子束光刻。将集成电气互连以扩展设备的功能。光电子学和纳米粒子捕获方面的示例实验有可能对各自领域产生巨大影响。更广泛的影响:如果成功,所提出的原子层光刻技术将使研究人员能够利用内置电极创建超长的个位数纳米间隙。因此,该提议有可能改变二维材料光电子学领域。研究生和本科生将获得纳米制造和表征方面的经验。对于 K-12 的外展活动,PI 团队将在明尼苏达州科学博物馆建立一个互动活动站。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sang-Hyun Oh其他文献

Surface plasmon enhanced spectroscopies and time and space resolved methods: general discussion
  • DOI:
    10.1039/c5fd90023a
  • 发表时间:
    2015-05
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Jeremy Baumberg;Michael Nielsen;Sergey Bozhevolnyi;Viktor Podolskiy;Thomas Ebbesen;Kaiqiang Lin;Alexei A. Kornyshev;Jacob Khurgin;James Hutchison;Katarzyna Matczyszyn;Jino George;Emiliano Cortes;James T. Hugall;Adi Salomon;Paul Dawson;Olivier Martin;Santhosh Kotni;F. Javier García de Abajo;Michael Flatté;Martin Moskovits;Duncan Graham;Stefan Maier;Masayuki Futamata;Sang-Hyun Oh;Javier Aizpurua;Zachary Schultz;Riccardo Sapienza
  • 通讯作者:
    Riccardo Sapienza
High-density metallic nanogap arrays for the sensitive detection of single-walled carbon nanotube thin films
  • DOI:
    10.1039/c4fd00233d
  • 发表时间:
    2015-03
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Hyeong-Ryeol Park;Seon Namgung;Xiaoshu Chen;Sang-Hyun Oh
  • 通讯作者:
    Sang-Hyun Oh
Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature
  • DOI:
    10.1039/c5nr04208a
  • 发表时间:
    2015-09
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Juliane Junesch;Gustav Emilsson;Kunli Xiong;Shailabh Kumar;Takumi Sannomiya;Hudson Pace;Janos Vörös;Sang-Hyun Oh;Marta Bally;Andreas B. Dahlin
  • 通讯作者:
    Andreas B. Dahlin
Surface passivation of a photonic crystal band-edge laser by atomic layer deposition of SiO2and its application for biosensing
  • DOI:
    10.1039/c4nr07552h
  • 发表时间:
    2015-01
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Hyungrae Cha;Jeongkug Lee;Luke R. Jordan;Si Hoon Lee;Sang-Hyun Oh;Hyo Jin Kim;Juhun Park;Seunghun Hong;Heonsu Jeon
  • 通讯作者:
    Heonsu Jeon
Bandgap engineering of two-dimensional semiconductor materials
二维半导体材料的带隙工程
  • DOI:
    10.1038/s41699-020-00162-4
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    A. Chaves;J. G. Azadani;Hussain Alsalman;D. R. da Costa;R. Frisenda;A. J. Chaves;Seung Hyun Song;Y. D. Kim;Daowei He;Jiadong Zhou;A. Castellanos-Gomez;F. M. Peeters;Zheng Liu;C. L. Hinkle;Sang-Hyun Oh;Peide D. Ye;Steven J. Koester;Young Hee Lee;Ph. Avouri
  • 通讯作者:
    Ph. Avouri

Sang-Hyun Oh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sang-Hyun Oh', 18)}}的其他基金

Collaborative Research: EAGER: Quantum Manufacturing: Vertical Coupling and Cross-Talk Shielding of Superconducting Quantum Devices
合作研究:EAGER:量子制造:超导量子器件的垂直耦合和串扰屏蔽
  • 批准号:
    2240245
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: Waveguide-Integrated Graphene Nano-tweezERs (WIGNER) for rapid sorting and analysis of nanovesicles and viruses
合作研究:用于快速分选和分析纳米囊泡和病毒的波导集成石墨烯纳米镊子(WIGNER)
  • 批准号:
    2227460
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: Waveguide-Integrated Graphene Nano-tweezERs (WIGNER) for rapid sorting and analysis of nanovesicles and viruses
合作研究:用于快速分选和分析纳米囊泡和病毒的波导集成石墨烯纳米镊子(WIGNER)
  • 批准号:
    2227460
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
OP: Super-Coupling Nanoplasmonics with Silicon Photonics for Mid-Infrared Biosensing
OP:超耦合纳米等离子体与硅光子学用于中红外生物传感
  • 批准号:
    1809240
  • 财政年份:
    2018
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Nanomanufacturing and System Integration of Multi-Functional Metallic Pyramidal Probes
多功能金属金字塔探针的纳米制造和系统集成
  • 批准号:
    1363334
  • 财政年份:
    2014
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Enhanced efficiency in organic photovoltaic cells using engineered plasmonic nanostructures
使用工程等离子体纳米结构提高有机光伏电池的效率
  • 批准号:
    1067681
  • 财政年份:
    2011
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
CAREER: IDBR: Ultrasmooth Patterned Metals for Membrane Biology
职业:IDBR:用于膜生物学的超光滑图案金属
  • 批准号:
    1054191
  • 财政年份:
    2011
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: IDBR: Nanopore optical biosensor development for analyzing membrane protein interactions
合作研究:IDBR:用于分析膜蛋白相互作用的纳米孔光学生物传感器开发
  • 批准号:
    0964216
  • 财政年份:
    2010
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于缺陷层增强布洛赫表面波的超分辨光刻技术
  • 批准号:
    62275036
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
EUV光刻掩模缺陷原波长叠层衍射跨尺度检测理论与方法研究
  • 批准号:
    52130504
  • 批准年份:
    2021
  • 资助金额:
    300 万元
  • 项目类别:
    重点项目
基于光刻控制中性层的柔性聚合物表面金属纳米裂纹制造研究
  • 批准号:
    51875083
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
集成电路制造中关键图形工艺的模型研究
  • 批准号:
    61874002
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
极细间隙金属纳米阵列的可控制备及其等离激元光催化的机理研究
  • 批准号:
    11504359
  • 批准年份:
    2015
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Single molecule DNA/RNA sequencing technology based on a parallel Raman scattering readout in a coupled nanochannel/nanopore system
基于耦合纳米通道/纳米孔系统中并行拉曼散射读数的单分子 DNA/RNA 测序技术
  • 批准号:
    10682588
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
Single molecule DNA/RNA sequencing technology based on a parallel Raman scattering readout in a coupled nanochannel/nanopore system
基于耦合纳米通道/纳米孔系统中并行拉曼散射读数的单分子 DNA/RNA 测序技术
  • 批准号:
    10482189
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
Single molecule DNA/RNA transport and Raman scattering readout in a coupled nanochannel/nanopore sequencing system.
耦合纳米通道/纳米孔测序系统中的单分子 DNA/RNA 传输和拉曼散射读数。
  • 批准号:
    10155991
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
Single molecule DNA/RNA sequencing technology based on a parallel Raman scattering readout in a coupled nanochannel/nanopore system
基于耦合纳米通道/纳米孔系统中并行拉曼散射读数的单分子 DNA/RNA 测序技术
  • 批准号:
    10682588
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
Core 1 - Nanomaterials Synthesis, Fabrication, and Characterization
核心 1 - 纳米材料合成、制造和表征
  • 批准号:
    8066921
  • 财政年份:
    2010
  • 资助金额:
    $ 36万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了