Collaborative Research: Waveguide-Integrated Graphene Nano-tweezERs (WIGNER) for rapid sorting and analysis of nanovesicles and viruses
合作研究:用于快速分选和分析纳米囊泡和病毒的波导集成石墨烯纳米镊子(WIGNER)
基本信息
- 批准号:2227460
- 负责人:
- 金额:$ 23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nontechnical description: This project aims to design and demonstrate a sensing platform which incorporates recent advances in both electrical trapping and integration of optical circuits for rapid concentrating, sorting, and analysis of biological nanoparticles. Viruses and cellular fragments extracted from liquid samples of a patient (e.g., urine, blood, etc.) contain abundant diagnostic information which can be used to detect and treat many diseases. However, detecting a specific target bioparticle from a mixture of many other particles in the sample complicates diagnostics. Current methods for isolating the targe bioparticles often require time-consuming processes such as multiple filtering or centrifugation stages, followed by amplification. Therefore, an active biosensor which rapidly sorts, traps, and detects bioparticles based on their size and physical properties would have significant impact on the field of biosensing and medical diagnostics. Mass producing such sensors could reduce the complexity, cost, and delay for patients undergoing medical diagnostic tests. This project also provides mentoring and outreach opportunities for undergraduate and high school students who are underrepresented in STEM fields.Technical description: This project will develop a biosensor which can sort, trap, and detect extracellular vesicles (EVs) and viral specimens by combining highly confined evanescent field excitation from visible waveguides with dielectrophoretic (DEP) trapping using atomically sharp graphene electrodes. To demonstrate this Waveguide-Integrated Graphene Nano-tweezERs (or “WIGNER”) platform, the team will: 1) combine transparent DEP graphene electrodes and silicon nitride photonic waveguides; 2) integrate microfluidics for efficient aqueous nanovesicle sorting and trapping; and 3) demonstrate rapid detection and analysis of single nanovesicles and viruses using line-imaging optical scattering, fluorescence, and Raman spectroscopy. The project aims to enable physiologically selective, multimodal analysis of nanovesicles and viruses at speeds ~100× faster than conventional scanning methods (i.e., confocal fluorescence and Raman spectroscopy). Project outcomes will have immediate relevance for emerging applications in life sciences (e.g., elucidating cell signaling pathways), nanomedicine (e.g., dynamic antibody binding response to lipid membranes used in mRNA vaccines), and disease diagnosis (e.g., amplification-free viral detection).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:该项目旨在设计和演示一个传感平台,该平台融合了电捕获和光学电路集成方面的最新进展,用于快速浓缩、分类和分析从患者液体样本中提取的生物纳米颗粒(例如,尿液、血液等)含有丰富的诊断信息,可用于检测和治疗许多疾病。然而,从样品中许多其他颗粒的混合物中检测特定的目标生物颗粒变得复杂。目前分离目标生物颗粒的方法通常需要耗时的过程,例如多个过滤或离心阶段,然后进行放大,因此,需要一种根据生物颗粒的大小和物理特性快速分类、捕获和检测生物颗粒的主动生物传感器。对生物传感和医学诊断领域产生重大影响,大规模生产此类传感器可以降低接受医学诊断测试的患者的复杂性、成本和延迟。该项目还为本科生和学生提供指导和推广机会。 STEM 领域代表性不足的高中生。技术描述:该项目将开发一种生物传感器,通过将可见光波导的高度受限倏逝场激发与介电泳 (DEP) 相结合,可以对细胞外囊泡 (EV) 和病毒样本进行分类、捕获和检测使用原子级锋利的石墨烯电极进行捕获 为了演示这种波导集成石墨烯纳米镊子(或“WIGNER”)平台,该团队将:1) 结合透明 DEP 石墨烯电极和氮化硅光子波导;2) 集成微流体以实现高效的水性纳米囊泡分选和捕获;3) 演示使用线成像光学散射、荧光对单个纳米囊泡和病毒进行快速检测和分析。该项目旨在以比传统扫描快 100 倍的速度对纳米囊泡和病毒进行生理选择性、多模式分析。方法(即共焦荧光和拉曼光谱)将与生命科学(例如阐明细胞信号传导途径)、纳米医学(例如对 mRNA 疫苗中使用的脂质膜的动态抗体结合反应)等新兴应用产生直接相关性。疾病诊断(例如,无扩增病毒检测)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Switching the Symmetry of Graphene Plasmons with Nanoemitters for Ultimate Infrared-Light Confinement
用纳米发射器切换石墨烯等离子体激元的对称性以实现终极红外光限制
- DOI:10.1103/physrevapplied.19.064039
- 发表时间:2023-06
- 期刊:
- 影响因子:4.6
- 作者:Lee, In;Martin;Avouris, Phaedon;Low, Tony;Oh, Sang
- 通讯作者:Oh, Sang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sang-Hyun Oh其他文献
Surface plasmon enhanced spectroscopies and time and space resolved methods: general discussion
- DOI:
10.1039/c5fd90023a - 发表时间:
2015-05 - 期刊:
- 影响因子:3.4
- 作者:
Jeremy Baumberg;Michael Nielsen;Sergey Bozhevolnyi;Viktor Podolskiy;Thomas Ebbesen;Kaiqiang Lin;Alexei A. Kornyshev;Jacob Khurgin;James Hutchison;Katarzyna Matczyszyn;Jino George;Emiliano Cortes;James T. Hugall;Adi Salomon;Paul Dawson;Olivier Martin;Santhosh Kotni;F. Javier García de Abajo;Michael Flatté;Martin Moskovits;Duncan Graham;Stefan Maier;Masayuki Futamata;Sang-Hyun Oh;Javier Aizpurua;Zachary Schultz;Riccardo Sapienza - 通讯作者:
Riccardo Sapienza
High-density metallic nanogap arrays for the sensitive detection of single-walled carbon nanotube thin films
- DOI:
10.1039/c4fd00233d - 发表时间:
2015-03 - 期刊:
- 影响因子:3.4
- 作者:
Hyeong-Ryeol Park;Seon Namgung;Xiaoshu Chen;Sang-Hyun Oh - 通讯作者:
Sang-Hyun Oh
Bandgap engineering of two-dimensional semiconductor materials
二维半导体材料的带隙工程
- DOI:
10.1038/s41699-020-00162-4 - 发表时间:
2020 - 期刊:
- 影响因子:9.7
- 作者:
A. Chaves;J. G. Azadani;Hussain Alsalman;D. R. da Costa;R. Frisenda;A. J. Chaves;Seung Hyun Song;Y. D. Kim;Daowei He;Jiadong Zhou;A. Castellanos-Gomez;F. M. Peeters;Zheng Liu;C. L. Hinkle;Sang-Hyun Oh;Peide D. Ye;Steven J. Koester;Young Hee Lee;Ph. Avouri - 通讯作者:
Ph. Avouri
Fine tuning of nanopipettes using atomic layer deposition for single molecule sensing
- DOI:
10.1039/c5an01001b - 发表时间:
2015-06 - 期刊:
- 影响因子:4.2
- 作者:
Jasmine Y. Y. Sze;Shailabh Kumar;Aleksandar P. Ivanov;Sang-Hyun Oh;Joshua B. Edel - 通讯作者:
Joshua B. Edel
Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature
- DOI:
10.1039/c5nr04208a - 发表时间:
2015-09 - 期刊:
- 影响因子:6.7
- 作者:
Juliane Junesch;Gustav Emilsson;Kunli Xiong;Shailabh Kumar;Takumi Sannomiya;Hudson Pace;Janos Vörös;Sang-Hyun Oh;Marta Bally;Andreas B. Dahlin - 通讯作者:
Andreas B. Dahlin
Sang-Hyun Oh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sang-Hyun Oh', 18)}}的其他基金
Collaborative Research: EAGER: Quantum Manufacturing: Vertical Coupling and Cross-Talk Shielding of Superconducting Quantum Devices
合作研究:EAGER:量子制造:超导量子器件的垂直耦合和串扰屏蔽
- 批准号:
2240245 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
OP: Super-Coupling Nanoplasmonics with Silicon Photonics for Mid-Infrared Biosensing
OP:超耦合纳米等离子体与硅光子学用于中红外生物传感
- 批准号:
1809240 - 财政年份:2018
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Atomic Layer Lithography for Integrated Optoelectronic Devices with Sub-10-nm Critical Dimensions
用于具有亚 10 纳米临界尺寸的集成光电器件的原子层光刻
- 批准号:
1610333 - 财政年份:2016
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Nanomanufacturing and System Integration of Multi-Functional Metallic Pyramidal Probes
多功能金属金字塔探针的纳米制造和系统集成
- 批准号:
1363334 - 财政年份:2014
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Enhanced efficiency in organic photovoltaic cells using engineered plasmonic nanostructures
使用工程等离子体纳米结构提高有机光伏电池的效率
- 批准号:
1067681 - 财政年份:2011
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
CAREER: IDBR: Ultrasmooth Patterned Metals for Membrane Biology
职业:IDBR:用于膜生物学的超光滑图案金属
- 批准号:
1054191 - 财政年份:2011
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Collaborative Research: IDBR: Nanopore optical biosensor development for analyzing membrane protein interactions
合作研究:IDBR:用于分析膜蛋白相互作用的纳米孔光学生物传感器开发
- 批准号:
0964216 - 财政年份:2010
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
相似国自然基金
基于物理信息神经网络的雷达回波资料反演蒸发波导算法研究
- 批准号:42305048
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单一取向CsPbBr3一维光波导阵列在异质半导体低维结构上的面内集成及其在光电互联中的应用研究
- 批准号:62374057
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于金属腔-波导模式构建光学拓扑态的理论及实验研究
- 批准号:12374346
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于光子拓扑绝缘体的新型太赫兹波导与频分复用器研究
- 批准号:12304475
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
波导集成真空光镊系统的实现及光力效应研究
- 批准号:12374316
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Waveguide-Integrated Graphene Nano-tweezERs (WIGNER) for rapid sorting and analysis of nanovesicles and viruses
合作研究:用于快速分选和分析纳米囊泡和病毒的波导集成石墨烯纳米镊子(WIGNER)
- 批准号:
2227459 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Collaborative Research: Waveguide-Integrated Graphene Nano-tweezERs (WIGNER) for rapid sorting and analysis of nanovesicles and viruses
合作研究:用于快速分选和分析纳米囊泡和病毒的波导集成石墨烯纳米镊子(WIGNER)
- 批准号:
2227459 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Collaborative Research: High-frequency, High-power Amplifier Based on Distributed Coupling of GaN HEMTs Through a SiC Substrate-integrated Waveguide
合作研究:基于 SiC 衬底集成波导的 GaN HEMT 分布式耦合的高频、高功率放大器
- 批准号:
2132329 - 财政年份:2021
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Collaborative Research: High-frequency, High-power Amplifier Based on Distributed Coupling of GaN HEMTs Through a SiC Substrate-integrated Waveguide
合作研究:基于 SiC 衬底集成波导的 GaN HEMT 分布式耦合的高频、高功率放大器
- 批准号:
2132323 - 财政年份:2021
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
EAGER Collaborative Research: Optimizing RNA binding and detection for use in the Capillary Waveguide Biosensor ESP module for automated, in situ microbial process studies
EAGER 协作研究:优化 RNA 结合和检测,用于毛细管波导生物传感器 ESP 模块,用于自动化原位微生物过程研究
- 批准号:
1133999 - 财政年份:2011
- 资助金额:
$ 23万 - 项目类别:
Standard Grant