Integrated opto-nanofluidic biosensors

集成光纳米流体生物传感器

基本信息

项目摘要

Intellectual Merit: Optical label-free biosensors measure analytes in their natural form without fluorescence labeling. Unfortunately, nearly all of them suffer from the detection limit bottleneck of approximately 1 pg/mm2. In contrast to detecting analytes attached to a single solid-liquid interface, the nanoporous based biosensor enables 3-dimensional detection, as multiple solid-liquid interfaces are present in the detection region. As a result, 0.01 pg/mm2 or better detection limit can potentially be achieved. However, one major issue with the nanoporous sensor is the sample delivery. It takes extremely long time for molecules to diffuse into (and out of) the porous detection region. The problem exacerbates when one deals with complex media, as it is very difficult to remove the unwanted interfering molecules from inside the pores, which causes large non-specific binding and severely deteriorates sensing performance.The proposed opto-nanofluidic sensor overcomes the aforementioned problems while maintaining high sensitivity even in the presence of complex media. It employs a nanostructured capillary placed in a Fabry-Pérot microcavity, which serves simultaneously as a flow-through nanofluidic channel, sample concentrator, and optical label-free sensor. It has a number of distinctive advantages. (1) It retains high sensitivity similar to that in nanoporous biosensors while having much larger Q-factors, which leads to an unprecedented detection limit on the order of fg/mm2; (2) It retains the high analyte capture efficiency due to the large surface-to-volume ratio and meanwhile its built-in flow-through nanofluidic channels enable quick and controlled sample delivery; (3) Detection of analytes from complex media becomes much easier. The interfering molecules can thoroughly be rinsed off, thus minimizing the non-specific binding and enhancing the sensing performance; (4) It is mechanically robust and can be mass-produced at a very low cost with the fiber drawing method; (5) The hole size is highly uniform and can be adjusted to accommodate different sizes of analytes and flow rates; (6) Due to its small size and simplicity, it can be scaled up to an array format for multiplexed detection on the nL scale; and (7) It can easily be connected to upstream sample processing components and downstream sample analyzers for further analysis. Broader Impact: This project includes prominent education components for graduate, undergraduate, and high school students. The students involved in the proposed project will acquire interdisciplinary knowledge and skills in photonics, nano/microfabrication, chemistry, material sciences, and biotechnology. Furthermore, the results and expertise developed through this project will be directly incorporated into the PI?s teaching at both undergraduate and graduate levels. Additionally, the PI will work closely with local non-Ph.D. granting institutes to develop a summer program for their students to conduct research in the PI?s lab. Finally, the collaboration with industrial companies will be instrumental in opto-nanofluidic sensor design, fabrication, integration, and applications, as well as in student training.
智力优点:无光标记的生物传感器以自然形式测量无荧光标记的分析物。不幸的是,几乎所有人都遭受了大约1 pg/mm2的检测极限瓶颈。与检测单个固液界面附加的分析物相反,基于纳米多孔的生物传感器可以实现3维检测,因为检测区域中存在多个固定液体界面。结果,可以实现0.01 pg/mm2或更好的检测极限。但是,纳米方传感器的一个主要问题是样品输送。分子散布到多孔检测区域中需要很长时间。当人们处理复杂的媒体时,问题会加剧,因为很难从毛孔内部去除有害的干扰分子,这会导致大型非特异性结合和严重检测的敏感性性能。拟议的光 - 纳米流通传感器克服了先前的敏感性,同时维持复杂媒体的敏感性。它采用纳米结构的毛细管放置在Fabry-Pérot微腔中,该毛细管仅用作流通的纳米流体通道,样品浓缩物和无光标记传感器。它具有许多独特的优势。 (1)它保留了与纳米多孔生物传感器相似的高灵敏度,同时具有较大的Q因子,这导致了FG/MM2阶的前所未有的检测极限; (2)由于较大的地表与体积比率,它保留了高分析物捕获效率,同时其内置流通纳米流体通道可快速,控制的样品传递; (3)从复杂媒体中检测分析物变得更加容易。可以彻底冲洗干扰分子,从而最大程度地减少非特异性结合并增强灵敏度性能。 (4)它在机械上很健壮,可以通过纤维制定方法以非常低的成本进行批量生产; (5)孔的大小高度均匀,可以调整以适应不同尺寸的分析物和流速; (6)由于其尺寸较小和简单性,可以将其缩放到阵列格式,以在NL尺度上进行多重检测; (7)它可以很容易地连接到上游样品处理组件和下游样品分析仪以进行进一步分析。更广泛的影响:该项目包括针对研究生,本科和高中生的著名教育组成部分。参与该项目的学生将获得光子学,纳米/微加工,化学,材料科学和生物技术方面的跨学科知识和技能。此外,通过该项目开发的结果和专业知识将直接纳入本科和研究生水平的PI教学中。此外,PI将与局部非PH.D紧密合作。授予机构为学生在PI实验室中进行研究制定夏季计划。最后,与工业公司的合作将在Opt-Nanofluidic传感器设计,制造,集成和应用以及学生培训中发挥作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xudong Fan其他文献

Carbon Onion Films-Molecular Interactions of Multi-Layer Fullerenes
碳洋葱膜-多层富勒烯的分子相互作用
  • DOI:
    10.1557/proc-1204-k05-70
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Raed A. Alduhaileb;V. Ayres;B. Jacobs;Xudong Fan;K. McElroy;M. Crimp;A. Hirata;Mutsumi Horikoshi
  • 通讯作者:
    Mutsumi Horikoshi
Label-Free Optofluidic Ring Resonator Biosensors for Sensitive Detection of Cancer Biomarkers
用于癌症生物标志物灵敏检测的无标记光流控环形谐振器生物传感器
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hongying Zhu;Xudong Fan
  • 通讯作者:
    Xudong Fan
Optofluidic Ring Cavity Lasers Fabricated by 3-D Femtosecond Laser Writing Technology
采用 3-D 飞秒激光写入技术制造的光流控环形腔激光器
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hengky Chandrahalim;Qiushu Chen;A. Said;M. Dugan;P. Bado;Xudong Fan
  • 通讯作者:
    Xudong Fan
Predicting radioactive accessory mineral dissolution during chemical weathering: The radiation dose at the solubility threshold for epidote-group detrital grains from the Yangtze River delta, China
化学风化过程中放射性副矿物溶解的预测:中国长江三角洲绿帘石族碎屑颗粒溶解度阈值的辐射剂量
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Price;D. Wilton;M. Tubrett;J. Schneiderman;Xudong Fan;Katherine Peresolak
  • 通讯作者:
    Katherine Peresolak
Optofluidic lasers in blood
血液中的光流控激光器

Xudong Fan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xudong Fan', 18)}}的其他基金

RAPID: COVID: Optofluidic sensor array for rapid and sensitive detection of COVID-19 antibodies
RAPID:COVID:光流控传感器阵列,用于快速、灵敏地检测 COVID-19 抗体
  • 批准号:
    2029484
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
2018 Lasers in Micro, Nano, and Bio Systems: The integration of laser physics, materials, nanotechnology, and biology GRC. To Be Held In Waterville Valley, NH June 17-22, 2017.
2018 微米、纳米和生物系统中的激光器:激光物理、材料、纳米技术和生物 GRC 的集成。
  • 批准号:
    1743488
  • 财政年份:
    2017
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Development of scanning optofluidic cell lasers for highly sensitive cellular and tissue analysis
开发用于高灵敏度细胞和组织分析的扫描光流控细胞激光器
  • 批准号:
    1607250
  • 财政年份:
    2016
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
IDBR TYPE A: Optofluidic laser array based ultrasensitive ELISA instrument with a large dynamic range
IDBR TYPE A:基于光流控激光阵列的超灵敏 ELISA 仪器,具有大动态范围
  • 批准号:
    1451127
  • 财政年份:
    2015
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
I-Corps: Wearable Transdermal Vapor Sensors for Non-invasive Continuous Disease Monitoring
I-Corps:用于无创连续疾病监测的可穿戴式透皮蒸汽传感器
  • 批准号:
    1443335
  • 财政年份:
    2014
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Plasmonically enhanced optical ring resonators for label-free single molecule detection
用于无标记单分子检测的等离子增强光学环形谐振器
  • 批准号:
    1303499
  • 财政年份:
    2013
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Sensitive Dual Mode Microfluidic Optomechanical Analysis of Biomolecules
生物分子的灵敏双模式微流体光机械分析
  • 批准号:
    1265164
  • 财政年份:
    2013
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
I-Corps: Development of Integrated Optofluidic ELISA Biosensor Plates
I-Corps:集成光流控 ELISA 生物传感器板的开发
  • 批准号:
    1340278
  • 财政年份:
    2013
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
AIR Option 1: Technology Translation: Prototyping a smart multi-dimensional micro-gas chromatography instrument with unprecedented peak capacity
AIR 选项 1:技术转化:原型设计具有前所未有的峰值容量的智能多维微型气相色谱仪
  • 批准号:
    1342917
  • 财政年份:
    2013
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
CAREER: Fluorescence Resonant Energy Transfer in Opto-fluidic Ring Resonators for Ultrasensitive Biomolecule Detection
职业:用于超灵敏生物分子检测的光流环谐振器中的荧光谐振能量转移
  • 批准号:
    1037097
  • 财政年份:
    2009
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant

相似国自然基金

低零色散硫系悬吊芯光纤及其中红外OPO激光特性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
低零色散硫系悬吊芯光纤及其中红外OPO激光特性研究
  • 批准号:
    62205163
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
超临界流体协同COFs固定化酶连续催化合成OPO结构脂的机理研究
  • 批准号:
    22178153
  • 批准年份:
    2021
  • 资助金额:
    60.00 万元
  • 项目类别:
    面上项目
超临界流体协同COFs固定化酶连续催化合成OPO结构脂的机理研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
大尺寸Ga2S3中远红外非线性光学晶体的生长及其OPO激光器件研究
  • 批准号:
    U21A20508
  • 批准年份:
    2021
  • 资助金额:
    260.00 万元
  • 项目类别:

相似海外基金

On-chip bio-opto-mechanics: Controlling phonon-assisted processes in single biomolecules
片上生物光力学:控制单个生物分子中的声子辅助过程
  • 批准号:
    EP/V049011/2
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Research Grant
Wearable Nano-Opto-electro-mechanic Systems
可穿戴纳米光电机械系统
  • 批准号:
    EP/X034720/1
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Research Grant
Opto-Spintronic interfaces for next generation quantum networks - (SpinNet)
用于下一代量子网络的光自旋电子接口 - (SpinNet)
  • 批准号:
    EP/X017850/1
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Research Grant
CAREER: Distributed, Wirelessly Powered, Implantable, Opto-Electro Neural Interface
职业:分布式、无线供电、可植入、光电神经接口
  • 批准号:
    2239915
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Next Generation Opto-GPCRs for Neuromodulatory Control
用于神经调节控制的下一代 Opto-GPCR
  • 批准号:
    10515612
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了