2010 Cold Spring Harbor Laboratory Conference on Systems Biology: Global Regulati
2010年冷泉港实验室系统生物学会议:全球监管
基本信息
- 批准号:7907229
- 负责人:
- 金额:$ 0.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-03-01 至 2015-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressArchitectureBiologicalBiologyCellsChromatin StructureCollaborationsComplexComputersDNA BindingDNA SequenceDNA StructureDevelopmentDisciplineDiseaseEducational workshopElementsEmerging TechnologiesEnhancersEpigenetic ProcessEukaryotaEukaryotic CellEvolutionFemaleFunctional RNAFundingGene ExpressionGene Expression RegulationGenesGenomeGenomicsHuman GenomeInternationalInvestigationKnowledgeLaboratoriesLengthLightLogicMalignant NeoplasmsModificationMolecularNuclearNucleosomesOralOrganismParticipantPatternPhylogenetic AnalysisPost-Transcriptional RegulationProcessProteinsRNA-Protein InteractionRegulationRegulator GenesRegulatory ElementResearchResearch PersonnelScientistSequence AnalysisSeriesStudentsSwitch GenesSystems BiologyTechnologyTerminologyTimeTranscriptTranscriptional RegulationUnited States National Institutes of HealthVariantWomanabstractingacronymscareerdesigngene discoverygenetic regulatory proteingenome sequencinggraspmeetingsnext generationnovel strategiesposterspreferencepromoterpublic health relevancesymposiumtranscription factor
项目摘要
DESCRIPTION (provided by applicant): This proposal seeks NIH funding to support the seventh in a series of scientific meetings on systems biology approaches to understanding gene regulation in eukaryotes. The proposed 2010 meeting will focus on five key aspects of gene regulation-cis-regulatory logic, transcriptional regulatory networks, nucleosomes and epigenetics, post-transcriptional regulation, and variation and evolution of regulatory networks. In addition, a session will be devoted to emerging technologies for analysis of gene regulation. The 2012 and 2014 meetings will follow a similar format and will include topics highly relevant to the current research at the time of the meeting.
How cells control gene expression is a fundamental problem in biology. Ever since the discovery of the genes and the double strand helix structure of the DNA, there have been continuous investigations into this problem. Many great discoveries have been made, including the nuclear machineries that make transcripts as well as the DNA sequences that serve to control gene expression. Despite these efforts, our knowledge of the molecular mechanisms of gene regulation remains sketchy. For example, the transcriptional regulatory sequences and the regulatory proteins for most genes in the human genome are still poorly defined, despite the availability of the complete genome sequences. Now, with the amount of genome sequence information for various organisms rapidly growing, the problem has become ever more pressing. Traditionally, investigators have studied gene regulation by analyzing the DNA-binding preferences of specific transcription factors and/or the cis-regulatory elements that control the expression patterns of single genes. These studies have tentatively identified DNA sequence motifs for around one hundred transcription factors, and have led to the idea that transcriptional regulation at the genome level involves a complex interplay between modular DNA sequence elements such as enhancers, silencers, insulators, and basal promoter elements. The last several years have seen rapid advances in the development of new genomics approaches to analysis of each step of the gene expression. Many of these approaches involve a computational component in their design or interpretation. Other strategies have evolved from the availability of several complete genomic sequences and the prospects of many more to come. These include analyses of sequence conservation among closely related species to detect "phylogenetic footprints" in non-coding regions and the use of genomic microarrays and next-generation sequencing technologies to study DNA-protein and RNA-protein interactions. The results from these new approaches have provided unprecedented details on the gene regulatory processes in prokaryotic as well as eukaryotic cells.
It is clear that effective collaborations between experimental and computational biologists will be required to come to grips with the complex problem of gene regulation. Thus we propose to conduct a meeting to permit a free cross-disciplinary exchange of existing ideas and expertise. It is hoped that this meeting will provide a mechanism for the establishment of new collaborations, and a forum for discussing new experimental and computational approaches. The meeting will be held at Cold Spring Harbor Laboratory on March 23-27, 2010. Twenty-two speakers of international renown have been invited to give oral presentations, and approximately forty-five others will be selected from submitted abstracts from applicants to the meeting. With the exception of the keynote address, oral presentations will be 15' in length with 5' for questions and discussions. Poster sessions will be included to encourage meaningful participation by the non-speaking attendees. In addition, we will hold pre-meeting workshops which will familiarize molecular biologists and bioinformaticians with the key concepts, terminology and acronyms needed to understand each others' disciplines. We expect attendance of approximately 250-300 scientists at the meeting. We particularly encourage female scientists and junior investigators to participate - one of the two keynote speakers, 25% of the remaining invited speakers, and two of the four meeting organizers are women, and the majority of the participants in previous years have been students, postdocs or investigators in their early independent career.
PUBLIC HEALTH RELEVANCE: Ever since the discovery of genes and the double strand helix structure of the DNA, a central question has concerned how these genes are switched on and off in the cell. Decades of research have contributed to a robust understanding of the basic mechanisms of gene expression, and in recent years efforts have turned towards how sets of genes are turned on or off together. With the outpouring of enormous amounts of biological information about the relation between gene expression and genome architecture (DNA sequence, DNA structure and modification, chromatin structure and modification etc.), a variety of different scientific disciplines have become necessary. Biologists and computer scientists are using these approaches to shed light on the principles underlying the orchestration of sets of genes in normal cellular states and how global regulation can become derailed in disease states such as cancer. This biennial international conference (2010, 2012 and 2014) will provide a forum for these scientists to share their latest discoveries and will bring together the leading experts in the field.
描述(由申请人提供):该提案寻求 NIH 资助,以支持一系列关于系统生物学方法的科学会议中的第七次会议,以了解真核生物的基因调控。拟议的2010年会议将重点讨论基因调控的五个关键方面——顺式调控逻辑、转录调控网络、核小体和表观遗传学、转录后调控以及调控网络的变异和进化。此外,一场会议将专门讨论基因调控分析的新兴技术。 2012 年和 2014 年的会议将遵循类似的形式,并将包括与会议时当前研究高度相关的主题。
细胞如何控制基因表达是生物学的一个基本问题。自从发现基因和DNA双链螺旋结构以来,人们对这个问题的研究一直在不断。人们已经取得了许多伟大的发现,包括产生转录本的核机器以及用于控制基因表达的 DNA 序列。尽管做出了这些努力,我们对基因调控分子机制的了解仍然很粗略。例如,尽管可以获得完整的基因组序列,但人类基因组中大多数基因的转录调控序列和调控蛋白仍然不清楚。现在,随着各种生物体基因组序列信息量的迅速增长,这个问题变得越来越紧迫。传统上,研究人员通过分析特定转录因子和/或控制单个基因表达模式的顺式调控元件的 DNA 结合偏好来研究基因调控。这些研究初步鉴定了大约一百个转录因子的 DNA 序列基序,并得出这样的观点:基因组水平的转录调控涉及模块化 DNA 序列元件(如增强子、沉默子、绝缘子和基础启动子元件)之间复杂的相互作用。过去几年,用于分析基因表达每个步骤的新基因组学方法的开发取得了快速进展。许多这些方法在其设计或解释中都涉及计算组件。其他策略已经从几个完整基因组序列的可用性和未来更多的前景中发展而来。其中包括分析密切相关物种之间的序列保守性,以检测非编码区域的“系统发育足迹”,以及使用基因组微阵列和下一代测序技术来研究 DNA-蛋白质和 RNA-蛋白质相互作用。这些新方法的结果为原核和真核细胞的基因调控过程提供了前所未有的细节。
显然,需要实验生物学家和计算生物学家之间的有效合作来解决基因调控的复杂问题。因此,我们建议召开一次会议,以便对现有的想法和专业知识进行自由的跨学科交流。希望这次会议将为建立新的合作提供一个机制,并为讨论新的实验和计算方法提供一个论坛。会议将于2010年3月23-27日在冷泉港实验室举行。会议邀请了22位国际知名演讲者做口头报告,另外约45位演讲者将从申请人提交的摘要中选出。 。除主旨演讲外,口头报告长度为 15 英尺,其中提问和讨论时间为 5 英尺。将包括海报会议,以鼓励未发言的与会者有意义地参与。此外,我们将举办会前研讨会,使分子生物学家和生物信息学家熟悉了解彼此学科所需的关键概念、术语和首字母缩略词。我们预计大约有 250-300 名科学家出席会议。我们特别鼓励女性科学家和初级研究者参与——两位主讲人中的一位、其余受邀演讲者中的25%以及四位会议组织者中的两位是女性,往年的大多数参与者都是学生、博士后或早期独立职业生涯的调查员。
公共健康相关性:自从发现基因和 DNA 的双链螺旋结构以来,一个中心问题就集中在这些基因如何在细胞中打开和关闭。数十年的研究促进了对基因表达基本机制的深入了解,近年来,人们的努力转向了基因组如何一起打开或关闭的问题。随着有关基因表达和基因组结构(DNA 序列、DNA 结构和修饰、染色质结构和修饰等)之间关系的大量生物学信息的大量涌现,各种不同的科学学科已变得必要。生物学家和计算机科学家正在利用这些方法来阐明正常细胞状态下基因组编排的基本原理,以及在癌症等疾病状态下全球调控如何脱轨。这一两年一度的国际会议(2010、2012和2014年)将为这些科学家提供一个分享最新发现的论坛,并将汇集该领域的领先专家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID J. STEWART其他文献
DAVID J. STEWART的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID J. STEWART', 18)}}的其他基金
CSHL 2023 Neurobiology of Drosophila Conference
CSHL 2023果蝇神经生物学会议
- 批准号:
10669936 - 财政年份:2023
- 资助金额:
$ 0.5万 - 项目类别:
CSHL Single Cell Analysis Course (2023-2027)
CSHL单细胞分析课程(2023-2027)
- 批准号:
10627446 - 财政年份:2023
- 资助金额:
$ 0.5万 - 项目类别:
CSHL 2023 Eukaryotic DNA Replication and Genome Maintenance Conference
CSHL 2023真核DNA复制与基因组维护会议
- 批准号:
10677192 - 财政年份:2023
- 资助金额:
$ 0.5万 - 项目类别:
CSHL 2023 Eukaryotic mRNA Processing Conference
CSHL 2023真核mRNA加工会议
- 批准号:
10679367 - 财政年份:2023
- 资助金额:
$ 0.5万 - 项目类别:
CSHL 2023 Eukaryotic DNA Replication and Genome Maintenance Conference
CSHL 2023真核DNA复制与基因组维护会议
- 批准号:
10677192 - 财政年份:2023
- 资助金额:
$ 0.5万 - 项目类别:
CSHL 2023 Conference on Microbial Pathogenesis & Host Response
CSHL 2023微生物发病机制会议
- 批准号:
10675902 - 财政年份:2023
- 资助金额:
$ 0.5万 - 项目类别:
CSHL The Biology of Genomes Conference (2023-2027)
CSHL基因组生物学会议(2023-2027)
- 批准号:
10608266 - 财政年份:2023
- 资助金额:
$ 0.5万 - 项目类别:
CSHL 2023 Conference on Biology of Cancer: Microenvironment & Metastasis
CSHL 2023癌症生物学会议:微环境
- 批准号:
10750261 - 财政年份:2023
- 资助金额:
$ 0.5万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
- 批准号:
10824044 - 财政年份:2024
- 资助金额:
$ 0.5万 - 项目类别:
Histopathologic interrogation of laminar microcircuits underlying cognition in frontotemporal dementia
额颞叶痴呆认知层状微电路的组织病理学研究
- 批准号:
10643786 - 财政年份:2023
- 资助金额:
$ 0.5万 - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 0.5万 - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 0.5万 - 项目类别:
Mechanisms underlying mustard gas-induced conjunctival injury and use of lipid mediators as medical countermeasures
芥子气引起的结膜损伤的机制以及脂质介质作为医疗对策的使用
- 批准号:
10882060 - 财政年份:2023
- 资助金额:
$ 0.5万 - 项目类别: