Computational and neural signatures of interoceptive learning in anorexia nervosa

神经性厌食症内感受学习的计算和神经特征

基本信息

项目摘要

PROJECT SUMMARY Anorexia nervosa (AN) is a highly impairing, chronic, and often fatal disorder, however its etiology remains poorly understood. Aberrant aversive learning, particularly in relation to internal bodily signals (i.e., aversive interoceptive learning), may be a critical feature of eating disorder pathology, as interoceptive domains are linked to greater body image disturbance, distorted hunger/satiety cues, and dysregulated affective processing in AN. Aversive interoceptive learning is driven by discrepancies between anticipated and observed sensory states (i.e., prediction errors), brain-based computations associated with networks consisting of the insula, striatum, prefrontal cortex, and amygdala. Individuals with AN demonstrate difficulties distinguishing between expected and experienced sensations, suggesting their ability to successfully learn from body sensations is compromised, which may maintain disordered eating. Despite this, aversive interoceptive learning is considerably understudied in eating disorders. This is the first study to examine 1) how individuals with AN learn from aversive interoceptive outcomes, 2) whether neuroanatomical regions supporting aversive interoceptive learning display altered functional connectivity in AN, and 3) how behavioral and neural signatures of aversive interoceptive learning are linked. Thirty-two adult women diagnosed with AN and 32 demographically matched healthy controls will complete an associative learning paradigm utilizing aversive breathing restrictions and will undergo resting-state functional magnetic resonance imaging. Interoceptive learning will be operationalized using computational models that track trial-by-trial prediction errors (PE) and stimulus value estimates. Aim 1 will examine model- generated latent behavioral differences in aversive interoceptive learning (e.g., learning rates) between AN participants and healthy controls, as well as associations with clinical eating disorder measures. Aim 2 will assess group differences in insula functional connectivity with regions linked to aversive learning and interoceptive processing (i.e., amygdala, striatum, prefrontal cortex). Aim 3 will explore associations between insular connectivity and learning rates. Uncovering behavioral and neural signatures of aversive interoceptive learning will not only inform etiological models of risk and maintenance in AN, but will also signify an imperative next step in the development of novel treatments that target both cognitive and sensory processes contributing to eating disorder pathology. Moreover, this project will provide invaluable training in computational and neuroimaging methodology, skills critically needed to enhance eating disorder research and treatment development.
项目概要 神经性厌食症 (AN) 是一种严重损害、慢性且常常致命的疾病,但其病因仍不清楚 明白了。异常的厌恶学习,特别是与内部身体信号有关的(即厌恶的) 内感受学习),可能是饮食失调病理学的一个关键特征,因为内感受域是相互联系的 AN 中更大的身体形象干扰、扭曲的饥饿/饱足线索以及失调的情感处理。 厌恶性内感受学习是由预期和观察到的感觉状态之间的差异驱动的(即, 预测误差),与由岛叶、纹状体组成的网络相关的基于大脑的计算, 前额皮质和杏仁核。患有 AN 的个体表现出区分预期和预期的困难 和经历过的感觉,表明他们成功地从身体感觉中学习的能力受到了损害, 这可能会导致饮食失调。尽管如此,厌恶性内感受学习的研究还很不足 在饮食失调中。这是第一项研究 1) AN 患者如何从厌恶性内感受中学习 结果,2)支持厌恶内感受学习的神经解剖区域是否改变 AN 中的功能连接,以及 3)厌恶性内感受学习的行为和神经特征如何 已链接。 32 名被诊断患有 AN 的成年女性和 32 名人口统计匹配的健康对照者将 利用厌恶性呼吸限制完成联想学习范式,并将经历静息状态 功能磁共振成像。内感受学习将通过计算来实施 跟踪逐次试验预测误差 (PE) 和刺激值估计的模型。目标 1 将检查模型 - AN 之间的厌恶性内感受学习(例如学习率)产生潜在的行为差异 参与者和健康对照,以及与临床饮食失调措施的关联。目标 2 将评估 岛叶功能连接与厌恶学习和内感受相关区域的群体差异 处理(即杏仁核、纹状体、前额皮质)。目标 3 将探索岛屿之间的联系 连接性和学习率。揭示厌恶性内感受学习的行为和神经特征 不仅将为 AN 中的风险和维护的病因学模型提供信息,而且还意味着下一步势在必行 开发针对饮食认知和感觉过程的新型疗法 紊乱病理学。此外,该项目将提供计算和神经影像方面的宝贵培训 加强饮食失调研究和治疗开发急需的方法论和技能。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Greater reliance on model-free learning in adolescent anorexia nervosa: An examination of dual-system reinforcement learning.
青少年神经性厌食症更加依赖无模型学习:双系统强化学习的检查。
  • DOI:
  • 发表时间:
    2024-02-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brown, Carina S;Devine, Sean;Otto, A Ross;Bischoff;Wierenga, Christina E
  • 通讯作者:
    Wierenga, Christina E
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carina Samantha Brown其他文献

Carina Samantha Brown的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Beat Extreme: An Interactive, Tailored Text Messaging Program Combining Extreme Weather Alerts with Hyper-localized Resources & Actionable Insights for Addressing Climate Change
Beat Extreme:一款将极端天气警报与超本地化资源相结合的交互式定制短信程序
  • 批准号:
    10698887
  • 财政年份:
    2023
  • 资助金额:
    $ 4.04万
  • 项目类别:
Optimization of a personalized skin cancer risk intervention for at-risk young adults
针对高危年轻人的个性化皮肤癌风险干预措施的优化
  • 批准号:
    10582944
  • 财政年份:
    2023
  • 资助金额:
    $ 4.04万
  • 项目类别:
Community reentry for older adults leaving prison with and without health limitations
有或没有健康限制的出狱老年人重返社区
  • 批准号:
    10741029
  • 财政年份:
    2023
  • 资助金额:
    $ 4.04万
  • 项目类别:
Beat Extreme: An Interactive, Tailored Text Messaging Program Combining Extreme Weather Alerts with Hyper-localized Resources & Actionable Insights for Addressing Climate Change
Beat Extreme:一款将极端天气警报与超本地化资源相结合的交互式定制短信程序
  • 批准号:
    10698887
  • 财政年份:
    2023
  • 资助金额:
    $ 4.04万
  • 项目类别:
Cortical Interneuron Dysfunction in Fragile X Syndrome
脆性 X 综合征中的皮质中间神经元功能障碍
  • 批准号:
    10418431
  • 财政年份:
    2022
  • 资助金额:
    $ 4.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了