Sensor Fusion System For Early And Accurate Fall Detection and Injury Protection
传感器融合系统可实现早期、准确的跌倒检测和伤害保护
基本信息
- 批准号:10256574
- 负责人:
- 金额:$ 29.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-30 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAccelerometerAdultAir BagsAlgorithmsAnteriorAppearanceBody measure procedureBrainCessation of lifeCoupledDataDetectionDevicesElderlyElectroencephalographyEpilepsyEquilibriumEventFutureGoalsHip region structureHumanImageInjuryLeadLegal patentLinkLiteratureMedical Care CostsMethodsMotionMotorMovementOutputParkinson DiseaseParticipantPatientsPatternPediatric HospitalsPerformancePeripheral Nervous SystemPhasePhiladelphiaPhysiologicalPhysiologyPopulationPopulations at RiskPosturePreventionProtective DevicesPublic HealthQuality of lifeReactionReflex actionResearchRiskSamplingSensorySignal TransductionStartle ReactionSystemTechnologyTranslatingaging populationbaseexperimental studyfall injuryfallshuman subjectimprovedinjury preventionmortalitymotion sensorneuromuscularpreventresponsesensorsevere injurywearable deviceyoung adult
项目摘要
Project Summary/Abstract
Fall is the leading cause of injury among elderly. One in three adults over 65 falls each year. Of those who fall,
20% to 30% suffer moderate to severe injuries and increase their risk of early death. In 2015, the total medical
costs related to fall injuries for people 65 and older was over $50 billion. Currently, there are devices that use
motion sensors (accelerometers) to detect imminent falls and inflate micro-airbags located in garments worn by
the users to protect from injury. The literature has shown that wearable solutions based on motion sensing
have low detection accuracy and suffer from false-positive events (the airbag may erroneously deploy during
daily activities after interpreting abrupt movements as falls). GraceFall, Inc. (GFI) will develop a patent
protected fall detection device based on a sensor-fusion algorithm that combines brain (EEG) and body motion
signals to allow reliable fall prediction and injury protection. Our initial findings, along with supporting literature,
show that a reliable EEG signal preceding an unexpected loss of balance could be the key to developing a
complete, reliable, ergonomic solution for fall detection and injury prevention, and would have a major impact
on maintaining mobility and quality of life in our aging population. Accelerometers reflect body movement and it
is difficult to distinguish between loss of stability and other non-fall related activities. The key difference
between intended actions and unintended loss of balance is the appearance of a “startle” response that can be
captured on most EEG channels. Using EEG sensors will allow us to identify the difference between a fall and
other acceleration scenarios. Our goal is to create a device that primarily uses these reliable brain responses,
coupled with motion sensors, to accurately detect loss of balance and stability, thereby preventing injuries due
to falling. The goal of the proposed Phase I project is to provide a proof of concept for a future product. Using
existing fall protection products that rely on motion sensing to detect an imminent fall, we will identify scenarios
in which these products have either false-positive (the airbag erroneously deploying in daily activities after
interpreting an abrupt movement as a fall) or false-negative (the airbag not deploying in a real fall scenario)
events. We will simulate these same scenarios on human subjects (Aim 1) and we will characterize the
physiological parameters of the startle response in an elderly population (Aim 2) to refine the sensor fusion
algorithm. The purpose of this proposal is proof of concept that adding a sensor fusion algorithm that combines
the EEG information with the acceleration data, improves the performance and reliability of the protection
system.
项目摘要/摘要
跌倒是老年人的主要原因。
20%至30%的人受到中度至重度伤害,并增加了早期死亡的风险。
与65岁及以上的人跌倒有关的费用超过500亿美元。
运动传感器(加速度计)以检测到即将跌落并充气的微型弹袋,位于服装中
用户免受伤害。
检测准确性较低,并遭受虚假阳性事件的痛苦
将突然的动作解释为瀑布的日常活动。
根据结合大脑(EEG)和身体运动的传感器融合算法的保护秋季检测装置
允许可靠的跌倒预测和伤害保护的信号。
证明在意外失去平衡之前,可靠的脑电图可能是开发一个的关键
完整,可靠,符合人体工程学的解决方案,用于预防跌倒,并将产生重大影响
维持我们老龄化的流动性和生活质量。
很难区分稳定性的损失和其他非下降活动
在预期的行动和意外失去平衡之间是“起动”响应的外观,可以是
在大多数脑电图通道上捕获。
其他加速场景。
再加上运动传感器,以准确检测平衡和稳定性的丧失,从而防止
跌倒。
现有的依靠运动来检测即将跌落的秋季保护产品,我们将确定方案
这些产品具有假阳性(安全气囊在
将突然的运动解释为秋天或假阴性(安全气囊不在真正的秋季场景中部署)
事件。
老年人群中惊吓反应的生理参数(AIM 2),以完善传感器融合
算法。
带有加速数据的脑电图信息,提高保护的性能和宗教性
系统。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Localizing EEG Recordings Associated With a Balance Threat During Unexpected Postural Translations in Young and Elderly Adults.
- DOI:10.1109/tnsre.2023.3331211
- 发表时间:2023
- 期刊:
- 影响因子:4.9
- 作者:Wang, Zhuo;Graci, Valentina;Seacrist, Thomas;Guez, Allon;Keshner, Emily A.
- 通讯作者:Keshner, Emily A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emily A Keshner其他文献
Reevaluating the theoretical model underlying the neurodevelopmental theory. A literature review.
重新评估神经发育理论的理论模型。
- DOI:
10.1093/ptj/61.7.1035 - 发表时间:
1981 - 期刊:
- 影响因子:3.2
- 作者:
Emily A Keshner - 通讯作者:
Emily A Keshner
Emily A Keshner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emily A Keshner', 18)}}的其他基金
Combined Cognitive Neuroscience/International Virtual Rehabilitation Conferences
联合认知神经科学/国际虚拟康复会议
- 批准号:
8458311 - 财政年份:2012
- 资助金额:
$ 29.89万 - 项目类别:
Posture and Orientation in Older Adults and Post-Stroke
老年人和中风后的姿势和方向
- 批准号:
7890167 - 财政年份:2009
- 资助金额:
$ 29.89万 - 项目类别:
Posture and Orientation in Older Adults and Post-Stroke
老年人和中风后的姿势和方向
- 批准号:
7285957 - 财政年份:2006
- 资助金额:
$ 29.89万 - 项目类别:
Posture and Orientation in Older Adults and Post-Stroke
老年人和中风后的姿势和方向
- 批准号:
7478552 - 财政年份:2006
- 资助金额:
$ 29.89万 - 项目类别:
Posture and Orientation in Older Adults and Post-Stroke
老年人和中风后的姿势和方向
- 批准号:
7101515 - 财政年份:2006
- 资助金额:
$ 29.89万 - 项目类别:
Posture and Orientation in Older Adults and Post-Stroke
老年人和中风后的姿势和方向
- 批准号:
7670243 - 财政年份:2006
- 资助金额:
$ 29.89万 - 项目类别:
Minimizing Instability with Dynamic Visual Inputs
通过动态视觉输入最大限度地减少不稳定性
- 批准号:
6696753 - 财政年份:2003
- 资助金额:
$ 29.89万 - 项目类别:
Minimizing Instability with Dynamic Visual Inputs
通过动态视觉输入最大限度地减少不稳定性
- 批准号:
6839993 - 财政年份:2003
- 资助金额:
$ 29.89万 - 项目类别:
Minimizing Instability with Dynamic Visual Inputs
通过动态视觉输入最大限度地减少不稳定性
- 批准号:
6990535 - 财政年份:2003
- 资助金额:
$ 29.89万 - 项目类别:
Minimizing Instability with Dynamic Visual Inputs
通过动态视觉输入最大限度地减少不稳定性
- 批准号:
7162947 - 财政年份:2003
- 资助金额:
$ 29.89万 - 项目类别:
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向结构和地震运动监测的低成本GNSS和加速度计集成方法研究
- 批准号:42311530062
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
柔性MEMS谐振式加速度计的共形设计与热弹性耦合动力学分析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
石英振梁加速度计稳定性漂移机理及其亚μg级调控机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Effects of daily low oxygen exposure on weight status, body composition, and metabolic health
每日低氧暴露对体重状况、身体成分和代谢健康的影响
- 批准号:
10756039 - 财政年份:2023
- 资助金额:
$ 29.89万 - 项目类别:
Longitudinal Personalized Dynamics Among Anorexia Nervosa Symptoms, Core Dimensions, and Physiology Predicting Suicide Risk
神经性厌食症症状、核心维度和预测自杀风险的生理学之间的纵向个性化动态
- 批准号:
10731597 - 财政年份:2023
- 资助金额:
$ 29.89万 - 项目类别:
Using Tailored mHealth Strategies to Promote Weight Management among Adolescent and Young Adult Cancer Survivors
使用量身定制的移动健康策略促进青少年和年轻癌症幸存者的体重管理
- 批准号:
10650648 - 财政年份:2023
- 资助金额:
$ 29.89万 - 项目类别:
Plasma proteomic signatures of physical activity and Alzheimer's disease and related dementias
体力活动和阿尔茨海默氏病及相关痴呆症的血浆蛋白质组特征
- 批准号:
10724140 - 财政年份:2023
- 资助金额:
$ 29.89万 - 项目类别: