Longitudinal Personalized Dynamics Among Anorexia Nervosa Symptoms, Core Dimensions, and Physiology Predicting Suicide Risk

神经性厌食症症状、核心维度和预测自杀风险的生理学之间的纵向个性化动态

基本信息

  • 批准号:
    10731597
  • 负责人:
  • 金额:
    $ 78.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT Anorexia nervosa (AN) is a severe mental illness with the highest mortality rate of any psychiatric disorder, with suicide as the second leading cause of death. Despite extremely high rates of suicide, risk factors for suicidal ideation (SI) and behaviors/attempts (SA) in this high-risk population are not well understood. While there is evidence that threat reactivity, stress-response, over-arousal, emotion dysregulation, and agitation contribute to suicide risk, the dynamic relations among these processes have not been characterized on a comprehensive, momentary basis. Our scientific premise, developed from our past work, is that the application of ideation-to-action and network theories will enable the identification of dynamic longitudinal interactions among core dimensions (e.g., arousal, threat), AN symptoms, and SI/SA both between and within individuals. Our study goals are to (1) identify symptom and dimension risk interactions of co-occurring AN and SI/SA between and within persons, (2) differentiate which risk factors predict SI vs SA and (3) test if these risk factors predict onset of SI/SA. These goals will ultimately identify which factors should be targeted in novel prevention and treatment efforts. We will use a multiple units of analysis approach, combined with novel, cutting-edge advances in suicide and network science. We will collect intensive real-time data on AN and suicide behaviors, anxiety, over-arousal, emotion regulation, and agitation using mobile technology, as well as psychophysiological assessment of emotion regulation (via heart-rate variability) and arousal (via electrodermal activity characterizing over-arousal and acceleration characterizing the sleep-wake cycle), from 230 individuals with a diagnosis of AN/Atypical AN (AAN). At 1-month, 6-month, and one year follow-up we will test if individual risk factors predict SI/SA. We expect 35-58 participants will have SA across our study period. Specific aims are to (1) test which symptoms and dimensions across time and between-persons maintain comorbid SI/SA and AN symptoms, (2) develop personalized network models to identify which suicide and AN features predict SI/SA within individuals and an exploratory aim (3) to test if there are differences between AN and AAN. The proposed research uses highly innovative methods, combining intensive longitudinal data collection methods, measurement of physiological data via wearable sensor technology, and novel advances in network science to answer previously unresolvable questions pinpointing which individual risk factors contribute to suicide outcomes. The proposed research has clinical impact. If we identify patterns that contribute to suicide risk, these data will provide a model of personalized medicine for the entire field of psychiatry, as well as providing novel intervention targets to prevent and treat AN spectrum illnesses. Additionally, the algorithms we develop can be used in both (a) clinician friendly software to identify treatment targets to prevent SI/SA and (b) in wearable alert devices that can disrupt SA before it occurs.
项目摘要/摘要 神经性厌食症(AN)是一种严重的精神疾病,任何精神病患者的死亡率最高, 自杀是死亡的第二大原因。尽管自杀率极高,但自杀的危险因素 在这种高风险人群中的构想(SI)和行为/尝试(SA)尚不清楚。而有 威胁反应性,压力反应,过度呼应,情绪失调和躁动的证据有助于 为了自杀的风险,这些过程之间的动态关系尚未在 全面,暂时的基础。我们过去工作开发的科学前提是应用程序 构想与行为和网络理论将使动态纵向相互作用识别 在核心维度(例如,唤醒,威胁),症状以及个人之间和内部的SI/SA。 我们的研究目标是(1)确定同时发生的症状和维度风险相互作用 在人之间和内部,(2)区分哪些风险因素可以预测SI与SA,(3)测试这些风险因素是否存在 预测SI/SA的发作。这些目标最终将确定在新型预防中应针对哪些因素 和治疗工作。我们将使用多个分析方法,结合新颖的,尖端 自杀和网络科学的进步。我们将收集有关自杀行为的密集实时数据, 使用移动技术的焦虑,过度宣布,情绪调节和煽动 情绪调节(通过心率的变异性)和唤醒的心理生理评估(通过 表征表征睡眠效果周期过度和加速度的电肌活动),从 230个患者诊断为AN/非典型A(AAN)。在1个月,6个月和一年的随访中,我们将 测试个人风险因素是否预测SI/SA。我们预计在我们的学习期间,有35-58名参与者将拥有SA。 具体目的是(1)测试哪些症状和尺寸在时间和彼此之间保持 合并症SI/SA和症状,(2)开发个性化网络模型,以识别哪种自杀和 功能可以预测个人内部的SI/SA和探索性目标(3),以测试是否存在差异 和aan。拟议的研究使用了高度创新的方法,结合了密集的纵向数据 收集方法,通过可穿戴传感器技术测量生理数据,以及新的进步 网络科学要回答以前无法解决的问题,以指出哪些个人风险因素 有助于自杀结果。拟议的研究具有临床影响。如果我们确定模式 这些数据有助于自杀风险,为整个领域提供个性化医学模型 精神病学,并提供新颖的干预靶标,以预防和治疗谱系疾病。 此外,我们开发的算法都可以在(a)临床友好的软件中使用,以识别治疗 在可穿戴警报设备中防止SI/SA和(b)的目标,该设备可能会在发生之前破坏SA。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cheri Alicia Levinson其他文献

Cheri Alicia Levinson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cheri Alicia Levinson', 18)}}的其他基金

Personalized Networks and Sensor Technology Algorithms of Eating Disorder Symptoms Predicting Eating Disorder Outcomes
个性化网络和传感器技术饮食失调症状的算法预测饮食失调的结果
  • 批准号:
    10652078
  • 财政年份:
    2023
  • 资助金额:
    $ 78.21万
  • 项目类别:
Innovations in Personalizing Treatment for Eating Disorders Using Idiographic Methods and the Impact of Personalization on Psychological, Physical, and Sociodemographic Outcomes
使用具体方法对饮食失调进行个性化治疗的创新以及个性化对心理、身体和社会人口学结果的影响
  • 批准号:
    10685796
  • 财政年份:
    2023
  • 资助金额:
    $ 78.21万
  • 项目类别:
Facing Eating Disorder Fears for Anorexia Nervosa: A Virtual Relapse Prevention Program Targeted at Approach and Avoidance Behaviors
面对饮食失调对神经性厌食症的恐惧:针对接近和回避行为的虚拟复发预防计划
  • 批准号:
    10425019
  • 财政年份:
    2022
  • 资助金额:
    $ 78.21万
  • 项目类别:
Facing Eating Disorder Fears for Anorexia Nervosa: A Virtual Relapse Prevention Program Targeted at Approach and Avoidance Behaviors
面对饮食失调对神经性厌食症的恐惧:针对接近和回避行为的虚拟复发预防计划
  • 批准号:
    10611448
  • 财政年份:
    2022
  • 资助金额:
    $ 78.21万
  • 项目类别:
A Pilot Investigation of Network-Informed Personalized Treatment for Eating Disorders versus Enhanced Cognitive Behavioral Therapy and Dynamic Mechanisms of Change
饮食失调的网络信息个性化治疗与增强认知行为疗法和动态变化机制的试点研究
  • 批准号:
    10612256
  • 财政年份:
    2022
  • 资助金额:
    $ 78.21万
  • 项目类别:
A Pilot Randomized Control Trial of a Relapse Prevention Online Exposure Protocol for Eating Disorders and Mechanisms of Change
针对饮食失调和变化机制的复发预防在线暴露协议的试点随机对照试验
  • 批准号:
    10579874
  • 财政年份:
    2021
  • 资助金额:
    $ 78.21万
  • 项目类别:
A Pilot Randomized Control Trial of a Relapse Prevention Online Exposure Protocol for Eating Disorders and Mechanisms of Change
针对饮食失调和变化机制的复发预防在线暴露协议的试点随机对照试验
  • 批准号:
    10372099
  • 财政年份:
    2021
  • 资助金额:
    $ 78.21万
  • 项目类别:
A Pilot Investigation of Network-Informed Personalized Treatment for Eating Disorders versus Enhanced Cognitive Behavioral Therapy and Dynamic Mechanisms of Change
饮食失调的网络信息个性化治疗与增强认知行为疗法和动态变化机制的试点研究
  • 批准号:
    10542414
  • 财政年份:
    2021
  • 资助金额:
    $ 78.21万
  • 项目类别:
A Pilot Investigation of Network-Informed Personalized Treatment for Eating Disorders versus Enhanced Cognitive Behavioral Therapy and Dynamic Mechanisms of Change
饮食失调的网络信息个性化治疗与增强认知行为疗法和动态变化机制的试点研究
  • 批准号:
    10347759
  • 财政年份:
    2021
  • 资助金额:
    $ 78.21万
  • 项目类别:
Diversity Supplement for 'Personalized Networks and Sensor Technology Algorithms of Eating Disorder Symptoms Predicting Eating Disorder Outcomes'
“饮食失调症状的个性化网络和传感器技术算法预测饮食失调结果”的多样性补充
  • 批准号:
    10329150
  • 财政年份:
    2021
  • 资助金额:
    $ 78.21万
  • 项目类别:

相似国自然基金

基于腔光机械效应的石墨烯光纤加速度计研究
  • 批准号:
    62305039
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
  • 批准号:
    52305621
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向结构和地震运动监测的低成本GNSS和加速度计集成方法研究
  • 批准号:
    42311530062
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目
绝缘体辐射诱导电荷致工作态三明治式MEMS加速度计敏感结构非单向性损伤机制研究
  • 批准号:
    12305313
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
柔性MEMS谐振式加速度计的共形设计与热弹性耦合动力学分析
  • 批准号:
    12202240
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Pelvic Floor Disorders Network Clinical Site
盆底疾病网络临床网站
  • 批准号:
    10891248
  • 财政年份:
    2023
  • 资助金额:
    $ 78.21万
  • 项目类别:
Effects of daily low oxygen exposure on weight status, body composition, and metabolic health
每日低氧暴露对体重状况、身体成分和代谢健康的影响
  • 批准号:
    10756039
  • 财政年份:
    2023
  • 资助金额:
    $ 78.21万
  • 项目类别:
Using Tailored mHealth Strategies to Promote Weight Management among Adolescent and Young Adult Cancer Survivors
使用量身定制的移动健康策略促进青少年和年轻癌症幸存者的体重管理
  • 批准号:
    10650648
  • 财政年份:
    2023
  • 资助金额:
    $ 78.21万
  • 项目类别:
Plasma proteomic signatures of physical activity and Alzheimer's disease and related dementias
体力活动和阿尔茨海默氏病及相关痴呆症的血浆蛋白质组特征
  • 批准号:
    10724140
  • 财政年份:
    2023
  • 资助金额:
    $ 78.21万
  • 项目类别:
Using instrumented everyday gait to predict falls in older adults using the WHS cohort
使用 WHS 队列,使用仪器化的日常步态来预测老年人跌倒
  • 批准号:
    10657828
  • 财政年份:
    2023
  • 资助金额:
    $ 78.21万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了