Center for Mesoscale Mapping
中尺度测绘中心
基本信息
- 批准号:10224848
- 负责人:
- 金额:$ 123.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAddressAlzheimer&aposs DiseaseAnatomic ModelsBasic ScienceBiologicalBrainBrain StemCell NucleusCerebral PalsyCommunitiesComputer ModelsComputer softwareConsensusDataData SetDevelopmentDevicesDiffusionDiseaseEducational process of instructingEducational workshopElectroencephalographyElectromagneticsElectrophysiology (science)EpilepsyEvaluationEventFiberFrequenciesFunctional Magnetic Resonance ImagingGenerationsGoalsHistologicHumanImageInvestigationLinkMachine LearningMagnetic Resonance ImagingMapsMeasuresMental DepressionMental disordersMicroscopicMindModelingMolecularMorphologic artifactsMotionMultiple SclerosisNeuronsNeurosciencesOnline SystemsPerformancePeripheral Nerve StimulationPropertyPublicationsResearch PersonnelResolutionResourcesRespirationScanningServicesSignal TransductionSleep DisordersSliceSpace ModelsSpatial DistributionStructureSurfaceSystemTechniquesTechnologyTimeTrainingTraining ProgramsTranscranial magnetic stimulationVisualizationWorkbasecognitive neurosciencedata spacedeep learningdesignelectric fieldfrontierhuman diseasehuman imagingimprovedin vivoindustry partnerinstrumentationmachine learning algorithmnervous system disorderneuroimagingnovelopen sourcepost-doctoral trainingpre-doctoralreconstructionrelating to nervous systemresponsespatiotemporaltooltool developmenttranslational neuroscienceusabilitywhite matter
项目摘要
Overview of the Proposed Resource – Abstract
The goal of the Center for Mesoscale Mapping is to drive the convergence of microscopic- and macroscopic-
scale evaluation of brain structure and function for human translational neuroscience, by developing and applying
tools to study the spatial distribution and temporal orchestration of mesoscopic events in the human brain. Our
Collaborators will, through a dynamic “push-pull” relationship, provide unique problems which drive the
development of these tools, and in return guide us in the design and optimization of our toolbox for practical use
in a variety of normal and disease settings. While there is still no formal consensus on the definition of
mesoscopic within the neuroscience community, we take as our guide the spatial and temporal scales at which
local groups of neurons act in coherent fashion – in the cortex, this includes the spatial scale of columns and
laminar structures (between ~0.1-1 mm), while in deeper structures includes the myriad of deep brain and
brainstem nuclei. Preliminary data from our own center, and of course others throughout the world, now support
the notion that we are on the threshold of being able to map, measure and perturb the human brain at these
scales, and do so comprehensively across wide swaths of the human brain. Temporally too, recent advances
suggest a convergence between temporal scales addressable with tools like fMRI, which can now investigate
delta frequency coherent phenomena, and advanced electromagnetic tools to measure and perturb coherent
electrophysiological activity at higher frequencies still. With this convergence in mind, the tools we proposed to
develop within the TRDs of the CMM will provide our Collaborative and Service User community with the
important “missing links” between the advances in human cognitive neuroscience at the “system level,” and the
enormous strides in cellular level circuit functional characterization. Our Collaborators will bring their own unique
challenges to help us define and further refine these tools, offering problems requiring distinct measures of
human brain structural and functional properties in a variety of normal and disease settings. Our Service Users
will utilize our tools to better understand human neural systems, and particularly human disease states from
multiple sclerosis to Alzheimer’s, to depression and epilepsy. Finally, our Center will seek to disseminate these
tools, through open-source software and hardware designs, industrial partnerships and “hands-on” teaching
courses for hardware, and to train a new generation of human neuroscientists in the use of our advanced tools
to explore the human brain at this next frontier.
拟议资源概述 - 摘要
中尺度测绘中心的目标是推动微观和宏观的融合
通过开发和应用,对人类转化神经科学的大脑结构和功能进行规模评估
研究人脑介观事件的空间分布和时间编排的工具。
合作者将通过动态的“推拉”关系,提供独特的问题来推动
开发这些工具,并指导我们设计和优化我们的工具箱以供实际使用
虽然在各种正常和疾病环境中仍然没有就定义达成正式共识。
在神经科学界的介观范围内,我们以空间和时间尺度为指导
局部神经元组以连贯的方式起作用——在皮层中,这包括柱的空间尺度和
层状结构(~0.1-1毫米之间),而更深的结构包括无数的深部大脑和
来自我们自己的中心以及世界各地其他中心的初步数据现在支持这一点。
我们即将能够在这些方面绘制、测量和扰动人类大脑
规模,并在人类大脑的广泛领域进行全面的研究,这也是最近的进展。
建议使用功能磁共振成像等工具可寻址的时间尺度之间的收敛,现在可以研究
德尔塔频率相干现象,以及用于测量和扰乱相干的先进电磁工具
考虑到这种融合,我们提出了更高频率的电生理活动。
在 CMM 的 TRD 内开发将为我们的协作和服务用户社区提供
人类认知神经科学在“系统层面”的进步与
我们的合作者将在细胞级电路功能表征方面取得巨大进步。
帮助我们定义和进一步完善这些工具的挑战,提出了需要采取不同措施的问题
我们的服务用户在各种正常和疾病环境下的人脑结构和功能特性。
将利用我们的工具更好地了解人类神经系统,特别是人类疾病状态
最后,我们的中心将努力传播这些疾病。
工具,通过开源软件和硬件设计、行业合作伙伴关系和“实践”教学
硬件课程,并培训新一代人类神经科学家使用我们的先进工具
探索人类大脑的下一个前沿领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BRUCE R ROSEN其他文献
BRUCE R ROSEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BRUCE R ROSEN', 18)}}的其他基金
Upgrade the 14T Ultrahigh Field Horizontal MR Scanner for Rodent and ex-vivo Imaging
升级 14T 超高场水平 MR 扫描仪,用于啮齿动物和离体成像
- 批准号:
10175835 - 财政年份:2021
- 资助金额:
$ 123.44万 - 项目类别:
相似国自然基金
基于增广拉格朗日函数的加速分裂算法及其应用研究
- 批准号:12371300
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
肠菌源性丁酸上调IL-22促进肠干细胞增殖加速放射性肠损伤修复的机制研究
- 批准号:82304065
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于肌红蛋白构象及其氧化还原体系探究tt-DDE加速生鲜牛肉肉色劣变的分子机制
- 批准号:32372384
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于联邦学习自动超参调整的数据流通赋能加速研究
- 批准号:62302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
M2 TAMs分泌的OGT通过促进糖酵解过程加速肝细胞癌恶性生物学行为的机制研究
- 批准号:82360529
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 123.44万 - 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 123.44万 - 项目类别:
Elucidating the role of pericytes in angiogenesis in the brain using a tissue-engineered microvessel model
使用组织工程微血管模型阐明周细胞在大脑血管生成中的作用
- 批准号:
10648177 - 财政年份:2023
- 资助金额:
$ 123.44万 - 项目类别:
Loss of transcriptional homeostasis of genes lacking CpG islands during aging
衰老过程中缺乏 CpG 岛的基因转录稳态丧失
- 批准号:
10814562 - 财政年份:2023
- 资助金额:
$ 123.44万 - 项目类别:
Dual-Venc 5D flow for Assessment of Congenital Heart Disease in Pediatrics
Dual-Venc 5D 流程用于评估儿科先天性心脏病
- 批准号:
10679809 - 财政年份:2023
- 资助金额:
$ 123.44万 - 项目类别: