Identifying Subgroups with Different Responses to HIV Risk Reduction Counseling
确定对艾滋病毒风险降低咨询有不同反应的亚组
基本信息
- 批准号:8798287
- 负责人:
- 金额:$ 23.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:AIDS preventionAccountingAffectBehaviorBehavioralBiologicalCharacteristicsClassificationClinicClinical TrialsComplexComplicationCounselingDataDatabasesEnsureFundingFutureHIVHIV InfectionsHIV riskHeterogeneityHuman immunodeficiency virus testIncidenceIndividualInterventionLeadMachine LearningMethodsMinority GroupsModelingModificationOutcomeParticipantPatientsPersonsPredictive FactorPredictive ValuePrevention strategyPreventive InterventionProceduresPropertyPublic HealthRandomizedReactionRelative (related person)ResearchRiskRisk ReductionSamplingSexually Transmitted DiseasesSiteStimulusSubgroupTechniquesTestingTimeTreatment outcomeTreesTwin Multiple BirthVisitWorkbasecomparative effectivenesscostdesigneffectiveness trialforestgroup counselinghigh riskinnovationmen who have sex with menperson centeredpredictive modelingpublic health relevanceresponsesimulationsuccesstreatment effecttreatment responsevirtual
项目摘要
DESCRIPTION (provided by applicant): Aware, a large (n=5012) randomized comparative effectiveness trial, found that HIV risk reduction counseling for HIV negative individuals at the time of an HIV test did not have an impact on cumulative incidence of However, the question remains as to whether there are subgroups that would benefit from counseling. Further, understanding how counseling paradoxically increased STIs in MSM, the group most at risk for HIV in the US, and whether there are other subgroups who increased STIs is of public health importance. In recent innovations machine learning techniques have been used specifically to uncover subgroups with differential treatment responses in a fashion that is replicable and does not suffer model over-fitting associated with multiple testing. We will extend methods to explore treatment subgroups and differences across minority groups based on two of these approaches-Random Forests (RF), and Virtual Twins (VT). The VT approach uses random forests as a first step to create separate forest-based predictions of outcomes under both treatment and control conditions for each trial participant. Then a person-specific treatment effect is created for each individual and a tree-based prediction is made. Whereas this procedure has been shown to be very promising, there is a tendency for the procedure to have relatively low sensitivity, and low positive predictive value. These problems may be alleviated by replacing the single tree predictor of the individual-specific treatment effect by the random forest procedure and/or reweighting of the classification problem to equalize the number of treatment successes (STI incidence is far from affecting 50% of the sample). We will use simulations to uncover the optimal strategy and then use the optimal strategy to create a model that predicts likelihood of future STIs based on behaviors and likelihood of the individual having a positive or negative impact of counseling. We will also use an extension of this model to find the factors associated with the observed MSM by counseling interaction observed in Project Aware. The significance of this research lies in 1) determining if there are subgroups of STD clinic patients who would benefit from or be harmed by short HIV risk reduction counseling 2) providing a model to target these individuals or understanding why they may show increased STIs, and 3) providing the groundwork for use of these approaches to understanding the heterogeneous response to other HIV prevention interventions.
描述(由申请人提供):意识到,一个大的(n = 5012)随机比较有效性试验发现,在艾滋病毒测试时,艾滋病毒负面个体的艾滋病毒风险降低咨询并没有影响累积发生率的累积发生率,但是问题仍然存在辅导中是否受益的亚组。此外,了解咨询方式如何在MSM中自相矛盾地增加了性传播感染,该组织在美国处于艾滋病毒的风险最高,以及其他亚组是否增加了性传播感染是公共卫生的重要性。在最近的创新中,机器学习技术已专门用于以可复制且不遭受与多次测试相关的模型过度拟合的方式发现具有差异治疗反应的亚组。我们将扩展基于这些方法随机森林(RF)和虚拟双胞胎(VT)的两种方法来探索少数群体的治疗亚组和差异的方法。 VT方法使用随机森林作为第一步,为每个试验参与者在治疗和控制条件下对结局的单独预测产生单独的预测。然后为每个人创建特定于人的治疗效果,并做出基于树的预测。尽管该过程已被证明是非常有希望的,但该过程的灵敏度相对较低,而阳性预测值较低。通过随机森林程序和/或分类问题的重新加权以均衡治疗成功的数量,可以通过更换单个特异性治疗效果的单个树预测来缓解这些问题(STI发病率远非影响样本的50%)。我们将使用仿真来揭示最佳策略,然后使用最佳策略来创建一个模型,该模型根据行为和个人对咨询的正面或负面影响的可能性预测未来性传播感染的可能性。我们还将使用该模型的扩展,通过在项目意识中观察到的咨询相互作用来找到与观察到的MSM相关的因素。这项研究的重要性在于1)确定是否有STD诊所患者的亚组会受益或受到短暂的HIV风险降低风险咨询的损害2)提供模型来针对这些人或理解为什么他们可能显示出增加的性传播感染,而3)为了解这些方法的基础,以了解这些方法对其他艾滋病毒的反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel J Feaster其他文献
Daniel J Feaster的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel J Feaster', 18)}}的其他基金
The University of Miami AIDS Research Center on Mental Health and HIV/AIDS - Center for HIV & Research in Mental Health (CHARM)Research Core - Methods
迈阿密大学艾滋病心理健康和艾滋病毒/艾滋病研究中心 - Center for HIV
- 批准号:
10686544 - 财政年份:2023
- 资助金额:
$ 23.03万 - 项目类别:
Better Together: Integrating MOUD in African American Community Settings
更好地在一起:将 MOUD 融入非裔美国人社区环境
- 批准号:
10791356 - 财政年份:2023
- 资助金额:
$ 23.03万 - 项目类别:
The Florida Node Alliance of the National Drug Abuse Treatment Clinical Trials Network
国家药物滥用治疗临床试验网络佛罗里达节点联盟
- 批准号:
10655864 - 财政年份:2022
- 资助金额:
$ 23.03万 - 项目类别:
CTN-0121: Integrated Care and Treatment for Severe Infectious Diseases and Substance Use Disorders among Hospitalized Patients
CTN-0121:住院患者严重传染病和药物滥用障碍的综合护理和治疗
- 批准号:
10442205 - 财政年份:2021
- 资助金额:
$ 23.03万 - 项目类别:
A Cluster RCT to Increase HIV Testing in Substance Use Treatment Programs
一项旨在增加药物滥用治疗项目中艾滋病毒检测的随机对照试验
- 批准号:
9340127 - 财政年份:2016
- 资助金额:
$ 23.03万 - 项目类别:
A Cluster RCT to Increase HIV Testing in Substance Use Treatment Programs
一项旨在增加药物滥用治疗项目中艾滋病毒检测的随机对照试验
- 批准号:
9993488 - 财政年份:2016
- 资助金额:
$ 23.03万 - 项目类别:
A Cluster RCT to Increase HIV Testing in Substance Use Treatment Programs
一项旨在增加药物滥用治疗项目中艾滋病毒检测的随机对照试验
- 批准号:
9235852 - 财政年份:2016
- 资助金额:
$ 23.03万 - 项目类别:
Development of a HIV prevention toolkit for at-risk HIV-negative male couples
为高危艾滋病毒阴性男性夫妇开发艾滋病毒预防工具包
- 批准号:
8912543 - 财政年份:2014
- 资助金额:
$ 23.03万 - 项目类别:
相似国自然基金
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332002
- 批准年份:2023
- 资助金额:165.00 万元
- 项目类别:重点项目
信用信息共享机制对企业会计稳健性、风险行为决策以及失信后果的影响研究
- 批准号:72302198
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
套期会计有效性的研究:实证检验及影响机制
- 批准号:72302225
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新证券法对证券审计市场格局和会计师事务所行为策略的影响研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新证券法对证券审计市场格局和会计师事务所行为策略的影响研究
- 批准号:72202176
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Screen Smart: Using Digital Health to Improve HIV Screening and Prevention for Adolescents in the Emergency Department
智能屏幕:利用数字健康改善急诊科青少年的艾滋病毒筛查和预防
- 批准号:
10711679 - 财政年份:2023
- 资助金额:
$ 23.03万 - 项目类别:
A daily diary study examining prospective associations between minutes of daily dating app use, affect, and HIV risk among young sexual minority men
一项每日日记研究,探讨年轻性少数男性每日使用约会应用程序的时间、影响和艾滋病毒风险之间的前瞻性关联
- 批准号:
10762708 - 财政年份:2023
- 资助金额:
$ 23.03万 - 项目类别:
Developing causal inference methods to evaluate and leverage spillover effects through social Interactions for designing improved HIV prevention interventions
开发因果推理方法,通过社会互动评估和利用溢出效应,设计改进的艾滋病毒预防干预措施
- 批准号:
10762679 - 财政年份:2023
- 资助金额:
$ 23.03万 - 项目类别:
Reducing HIV vaccine and prevention hesitancy among sexual and gender minority adolescents
减少性少数和性别少数青少年对艾滋病毒疫苗和预防的犹豫
- 批准号:
10620502 - 财政年份:2023
- 资助金额:
$ 23.03万 - 项目类别: