Multibeam Healing for Laser Micromachining in Manufacturing
制造业激光微加工的多光束修复
基本信息
- 批准号:8209071
- 负责人:
- 金额:$ 82.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAddressAnimalsAreaBehaviorBerlinBerylliumBiological ProcessBiomedical EngineeringCaliforniaCaregiversCeramicsCharacteristicsCherry - dietaryClinicCollaborationsCommunitiesComplementConsultationsDefectDevelopmentDiagnosisDiagnostic ImagingDiagnostic radiologic examinationDiamondDigital LibrariesDiscipline of Nuclear MedicineDropsEconomicsElementsEligibility DeterminationEngineeringEnsureEnvironmentEquipmentEvaluationFilmFoundationsFractureFranceFundingFutureFuture GenerationsGadoliniumGenerationsGoalsGovernmentGrantGrowthHealedHealthHealthcareHeightHumanImageImaging technologyImplantIndividualInferiorInstitutionJointsKnowledgeLSO crystalLasersLeadLettersLutetiumMagnetic Resonance ImagingManualsManufacturer NameMarketingMeasuresMechanicsMedicalMedical ImagingMedical TechnologyMethodsModalityModelingMorphologyNuclearOpticsOrthopedicsOutcomePaperPatientsPatternPennsylvaniaPerformancePersonsPhasePhiladelphiaPhysicsPositron-Emission TomographyProbabilityProceduresProcessProductionPropertyProtocols documentationPublishingRadiology SpecialtyReliability of ResultsReportingResearchResearch PersonnelResolutionRewardsSaintsScienceShapesSideSolutionsSpecimenStressStructureSurfaceSystemSystems DevelopmentTechniquesTechnologyTextTimeUniversitiesWidthWorkWritingX-Ray Computed TomographyYttriumauthoritybasecommercial applicationcommercializationcostcost effectivedensitydesigndetectorenergy densityexperiencegadolinium oxidegadolinium oxyorthosilicatehealingimprovedinnovationinterestmanufacturing processmeetingsmicrosystemsmillimeternovelpreventprofessorprogramsrepositoryresearch studysimulationsingle photon emission computed tomographytechnology developmentthermal stressyttria
项目摘要
DESCRIPTION (provided by applicant): There is considerable interest in new and innovative manufacturing methods for medical imaging technologies to enhance performance while reducing cost. The precision and low-force signature of lasers makes them very attractive alternatives to traditional machining methods for brittle materials, particularly scintillators such as lutetium oxyorthosilicate (LSO), gadolinium oxyorthosilciate (GSO), lutetium-yttrium oxyorthosilicate (LYSO), etc. used in high-resolution diagnostic imaging and nuclear medicine. However, material damage, especially micro-scale cracking, during laser machining is a frequently encountered problem that results in added costs, needless scrap, and reduced performance/reliability. These issues have prevented the tremendous commercial potential of laser machining from being fully utilized to manufacture large and finely pixelated scintillator arrays. The goal of the Phase I research was to demonstrate the feasibility of defect free laser machining of brittle scintillators using a novel multibeam approach. We are pleased to report that the Phase I research has not only clearly demonstrated the feasibility of our approach but has also led to a major discovery that has the potential to dramatically reduce the cost and duration of pixelation. Thus our Phase I effort has laid a firm foundation for achieving our ultimate goal of defect-free manufacturing of scintillator arrays using laser machining. With these exceptional results, the technique of laser pixelation and multibeam healing is now poised for exploitation in rapid and cost effective systems for micro-machining arrays of various sizes, shapes, and orientations in scintillators of critical importance to medical and non-medical applications. The proposed research is designed to address manufacturing issues through detailed simulation studies of the material's behavior during laser ablation, and by implementing a new laser beam delivery system based on experimental findings that confirm the simulation results. Developing such a system and a body of knowledge in scintillator micro-machining will allow fabricating large arrays of various scintillators at significantly reduced manufacturing cost, while greatly improving detector performance with reduced pixel sizes and inter-pixel gaps. Therefore, the proposed research has great commercial relevance, especially for modalities as PET where higher resolution and lower cost is critically important.
描述(由申请人提供):人们对医学成像技术的新型创新制造方法非常感兴趣,以提高性能并降低成本。激光的精度和低作用力特征使其成为脆性材料传统加工方法非常有吸引力的替代品,特别是用于闪烁体的氧原硅酸镥 (LSO)、氧原硅酸钆 (GSO)、氧原硅酸钇钇 (LYSO) 等。高分辨率诊断成像和核医学。然而,激光加工过程中的材料损坏,尤其是微尺度裂纹是经常遇到的问题,会导致成本增加、不必要的报废以及性能/可靠性降低。这些问题阻碍了激光加工的巨大商业潜力被充分利用来制造大型且精细的像素化闪烁体阵列。第一阶段研究的目标是证明使用新型多光束方法对脆性闪烁体进行无缺陷激光加工的可行性。我们很高兴地报告,第一阶段研究不仅清楚地证明了我们方法的可行性,而且还带来了一项重大发现,有可能大幅降低像素化的成本和持续时间。因此,我们第一阶段的努力为实现使用激光加工无缺陷制造闪烁体阵列的最终目标奠定了坚实的基础。凭借这些出色的结果,激光像素化和多光束修复技术现已准备好在快速且经济高效的系统中进行开发,用于闪烁体中各种尺寸、形状和方向的微加工阵列,这对医疗和非医疗应用至关重要。拟议的研究旨在通过对激光烧蚀过程中材料行为的详细模拟研究来解决制造问题,并根据证实模拟结果的实验结果实施新的激光束传输系统。开发这样的系统和闪烁体微加工知识体系将允许以显着降低的制造成本制造各种闪烁体的大型阵列,同时通过减小像素尺寸和像素间间隙来大大提高探测器性能。因此,所提出的研究具有很大的商业意义,特别是对于 PET 等模式,更高的分辨率和更低的成本至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BIPIN SINGH其他文献
BIPIN SINGH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BIPIN SINGH', 18)}}的其他基金
Blood Flow Velocimetry Using Digital Subtraction Angiography
使用数字减影血管造影进行血流速度测量
- 批准号:
9137447 - 财政年份:2016
- 资助金额:
$ 82.29万 - 项目类别:
Blood Flow Velocimetry Using Digital Subtraction Angiography
使用数字减影血管造影进行血流速度测量
- 批准号:
9763361 - 财政年份:2016
- 资助金额:
$ 82.29万 - 项目类别:
Photonic Bandgap Structures for Improved Timing and Spatial Resolution in PET Det
用于提高 PET 检测中的定时和空间分辨率的光子带隙结构
- 批准号:
8001023 - 财政年份:2010
- 资助金额:
$ 82.29万 - 项目类别:
Multibeam Healing for Laser Micromachining in Manufacturing
制造业激光微加工的多光束修复
- 批准号:
7109099 - 财政年份:2006
- 资助金额:
$ 82.29万 - 项目类别:
Multibeam Healing for Laser Micromachining in Manufacturing
制造业激光微加工的多光束修复
- 批准号:
7224868 - 财政年份:2006
- 资助金额:
$ 82.29万 - 项目类别:
Digital 2-D Neutron Detector for Protein Function Studies
用于蛋白质功能研究的数字二维中子探测器
- 批准号:
7340184 - 财政年份:2005
- 资助金额:
$ 82.29万 - 项目类别:
Digital 2-D Neutron Detector for Protein Function Studies
用于蛋白质功能研究的数字二维中子探测器
- 批准号:
7219722 - 财政年份:2005
- 资助金额:
$ 82.29万 - 项目类别:
Multibeam Healing for Laser Micromachining in Manufacturing
制造业激光微加工的多光束修复
- 批准号:
7670766 - 财政年份:2005
- 资助金额:
$ 82.29万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 82.29万 - 项目类别:
Optical platform for functional longitudinal imaging of metabolite uptake in vivo
用于体内代谢物摄取功能纵向成像的光学平台
- 批准号:
10585764 - 财政年份:2023
- 资助金额:
$ 82.29万 - 项目类别:
LRP1 as a novel regulator of CXCR4 in adult neural stem cells and post-stroke response
LRP1 作为成体神经干细胞和中风后反应中 CXCR4 的新型调节剂
- 批准号:
10701231 - 财政年份:2023
- 资助金额:
$ 82.29万 - 项目类别:
Multiphon imaging for understanding social brain function in tadpoles
多声子成像用于了解蝌蚪的社交脑功能
- 批准号:
10717610 - 财政年份:2023
- 资助金额:
$ 82.29万 - 项目类别:
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 82.29万 - 项目类别: