Optical platform for functional longitudinal imaging of metabolite uptake in vivo
用于体内代谢物摄取功能纵向成像的光学平台
基本信息
- 批准号:10585764
- 负责人:
- 金额:$ 34.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-15 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAddressAffinityAmino AcidsAnimal Cancer ModelAnimal Disease ModelsAnimal ModelAnimalsAzidesBehaviorBiologicalBiological AssayBreast Cancer ModelCRISPR/Cas technologyCategoriesCell Culture TechniquesCell modelCellsChemistryClinicalDependenceDevelopmentDiabetes MellitusDisease ProgressionEnzymesEvaluationFatty AcidsFirefliesGenerationsGlucoseGlutamineGoalsHumanHuman PathologyImageImaging DeviceImaging TechniquesIn VitroInterventionIntraperitoneal InjectionsInvestigationIsotopesKineticsLigationLightLuc GeneLuciferasesMagnetic Resonance ImagingMalignant NeoplasmsMeasurementMetabolicMetabolic DiseasesMetabolismMethodsModificationMolecular ProbesMonitorMusNatureNeurodegenerative DisordersNormal CellNucleosidesNucleotidesNutrientOleic AcidsOncologyOpticsOralPathologicPhysiologicalPlayPositron-Emission TomographyProcessProductionProliferatingPublishingRadioactiveReactionReagentReportingRoleRouteSafetySignal TransductionSpecificityStructureSynthesis ChemistrySystemTechniquesTechnologyTestingTherapeuticTimeTissuesToxic effectTransgenic MiceTransgenic OrganismsTryptophanTubeValidationWorkabsorptionanalytical methodanalytical toolbiological systemsbioluminescence imagingcancer cellcancer therapychemotherapyclinical applicationcostdesigndrug discoveryeffective therapyexperimental studyglucose uptakehuman modelimaging modalityimaging platformimprovedin vitro Modelin vivoinhibitorinterestintravenous injectionluciferinmetabolic abnormality assessmentmolecular imagingnew technologynon-invasive imagingnonalcoholic steatohepatitisnovelnuclear imagingoptical imagingserial imagingsimulationsingle photon emission computed tomographysmall hairpin RNAsuccesstherapeutic targettooltumortumor growthtumor metabolismtumor microenvironmenttumorigenesisuptake
项目摘要
PROJECT SUMMARY
Cancer cells undergo metabolic reprogramming in order to meet elevated energy requirements to fuel
proliferation, thus resulting in their differential utilization of many essential metabolites compared to normal cells.
Recent advancements in the field of cancer metabolic reprogramming demonstrated significant increase in
efficiency of standard cancer treatments when combined with cancer metabolic inhibitors. However, tumor
metabolic reprogramming remains poorly understood for the majority of cancers. Moreover, many recent reports
revealed evidence that the metabolism of cancer cells in vitro can differ significantly from that of in vivo because
in vitro models lack complexity of the tumor microenvironment. However, the progress of studying tumor
metabolism in vivo is significantly hampered by the lack of efficient tools that allow real-time noninvasive imaging
and quantification of metabolite absorption in animal models of cancer which closely reflect human pathologies.
Current strategies have significant limitations and mostly rely on MRI, nuclear imaging techniques such as
PET/SPECT, and endpoint ex vivo quantification of metabolite absorption (ex. MS). Here, we propose to develop
a novel optical imaging platform that has several important advantages over the existing methods, and allows
noninvasive evaluation of the uptake of several essential metabolites using highly sensitive and quantifiable
bioluminescent imaging. The method is independent of radioactive and/or short-lived isotopes, less costly, and
allows longitudinal monitoring of metabolite absorption during disease progression (e.g., cancer development or
clinical intervention such as chemotherapy). While the first application of this approach has been already
successfully validated by us using glucose as an example (Maric et.al., Nat Methods, 2019), we propose to
expand this technology to develop novel probes to study uptake of several amino acids, fatty acids, and
nucleosides that all play central role in cancer metabolic reprogramming. We will perform thorough validation of
this platform in cells, healthy transgenic mice and murine animal cancer models to assure that the reagents fulfill
the requirements for physiological behavior, stability, safety, and robust signal generation both in vitro and in
vivo. In addition, we will optimize in vivo delivery routes, vehicles, and concentrations to achieve high
signal/background ratios. In summary, the overall goal of this study is to generate a novel optical imaging platform
that would become a universal analytical tool for monitoring nutrient uptake in live cells and animal models of
disease. While we plan to apply this platform to unravel tumor metabolic reprogramming, the same method could
be adapted for studies of several other important human pathologies, in which changes in metabolism are known
to play a significant role, such as diabetes, neurodegenerative diseases, nonalcoholic steatohepatitis (NASH),
and many others. Therefore, this novel technology is expected to have a strong, enabling, and long-lasting impact
on many physiological and pathological investigations in the field of metabolism and will become a valuable tool
for drug discovery, applicable to oncology and other metabolic disorders.
项目概要
癌细胞经历代谢重编程以满足更高的能量需求
增殖,从而导致与正常细胞相比,它们对许多必需代谢物的利用存在差异。
癌症代谢重编程领域的最新进展表明,
与癌症代谢抑制剂联合使用时标准癌症治疗的效率。然而,肿瘤
对于大多数癌症来说,代谢重编程仍然知之甚少。此外,最近的许多报道
有证据表明,癌细胞的体外代谢与体内代谢可能存在显着差异,因为
体外模型缺乏肿瘤微环境的复杂性。然而肿瘤研究的进展
由于缺乏允许实时无创成像的有效工具,体内新陈代谢受到严重阻碍
癌症动物模型中代谢物吸收的量化密切反映了人类病理学。
目前的策略有很大的局限性,并且主要依赖于 MRI、核成像技术,例如
PET/SPECT 和代谢物吸收的终点离体定量(例如 MS)。在此,我们建议开发
一种新颖的光学成像平台,与现有方法相比具有几个重要优势,并且允许
使用高度灵敏且可量化的方法对几种必需代谢物的吸收进行无创评估
生物发光成像。该方法独立于放射性和/或短寿命同位素,成本较低,并且
允许纵向监测疾病进展期间的代谢物吸收(例如,癌症发展或
临床干预,例如化疗)。虽然这种方法的首次应用已经
我们以葡萄糖为例成功验证了这一点(Maric 等人,Nat 方法,2019),我们建议
扩展这项技术来开发新的探针来研究几种氨基酸、脂肪酸和
核苷均在癌症代谢重编程中发挥核心作用。我们将进行彻底的验证
该平台在细胞、健康转基因小鼠和鼠类动物癌症模型中进行测试,以确保试剂满足
体外和体内生理行为、稳定性、安全性和强大信号生成的要求
体内。此外,我们将优化体内递送路线、载体和浓度,以实现高
信号/背景比。总之,本研究的总体目标是生成一种新颖的光学成像平台
这将成为监测活细胞和动物模型中营养吸收的通用分析工具
疾病。虽然我们计划应用这个平台来解开肿瘤代谢重编程的谜团,但同样的方法也可以
适用于研究其他几种重要的人类病理学,其中新陈代谢的变化是已知的
发挥重要作用,如糖尿病、神经退行性疾病、非酒精性脂肪性肝炎 (NASH)、
以及许多其他人。因此,这项新技术预计将产生强大、有利且持久的影响
代谢领域的许多生理和病理研究,并将成为一个有价值的工具
用于药物发现,适用于肿瘤学和其他代谢性疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elena Goun其他文献
Elena Goun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elena Goun', 18)}}的其他基金
A bioluminescent-based imaging probe for noninvasive longitudinal monitoring of CoQ10 uptake in vivo
基于生物发光的成像探针,用于体内 CoQ10 摄取的无创纵向监测
- 批准号:
10829717 - 财政年份:2023
- 资助金额:
$ 34.2万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Outer hair cells and noise-induced hearing loss
外毛细胞和噪音引起的听力损失
- 批准号:
10862034 - 财政年份:2023
- 资助金额:
$ 34.2万 - 项目类别:
Ligand-Directed KRAS G12V Mutant-Specific Therapeutics
配体导向的 KRAS G12V 突变特异性治疗
- 批准号:
10757070 - 财政年份:2023
- 资助金额:
$ 34.2万 - 项目类别:
Comprehensive identification of E3 ubiquitin ligases that degrade heart, lung, and blood-relevant transcription factors
全面鉴定可降解心脏、肺和血液相关转录因子的 E3 泛素连接酶
- 批准号:
10677457 - 财政年份:2023
- 资助金额:
$ 34.2万 - 项目类别:
Defining the regulation and regulatory mechanisms of TCF-1 in CD8+ T cell differentiation
明确TCF-1在CD8 T细胞分化中的调节和调控机制
- 批准号:
10605014 - 财政年份:2022
- 资助金额:
$ 34.2万 - 项目类别:
Systems biological assessment of B cell responses to vaccination
B 细胞对疫苗接种反应的系统生物学评估
- 批准号:
10419281 - 财政年份:2022
- 资助金额:
$ 34.2万 - 项目类别: