Blood Flow Velocimetry Using Digital Subtraction Angiography

使用数字减影血管造影进行血流速度测量

基本信息

  • 批准号:
    9763361
  • 负责人:
  • 金额:
    $ 57.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Diseases in the vascular system are still the leading cause of mortality and morbidity in developed countries despite considerable therapeutic progress in recent years. Blood flow velocity provides critical information needed for the diagnosis of vascular diseases, planning of interventional surgery treatment, and monitoring of endovascular treatment of brain arteriovenous malformations. The present lack of knowledge of flow characteristics, arising from the limited temporal and spatial resolution and limited accuracies of the current metrology modalities, averts understanding of the underlying hemodynamics and its correlation with multiple cerebrovascular diseases. To address issues with the current instrumentation, we are developing an ultrafast, high-resolution X-ray blood flow velocimetry system that will provide real time in-vivo quantitative blood velocity maps in the endovascular system. The envisioned system utilizes three transformational technologies; 1) an intense, low cost, pulsed X-ray source with pulse widths down to microseconds and inter-pulse durations of tens of microseconds, 2) an ultrafast X-ray imager with high spatial resolution, large active area, and wide dynamic range, and 3) an X-ray to light converter that overcomes the afterglow and hysteresis limitations of the current high resolution sensors. The system will enable inexpensive digital subtraction angiography (DSA) that can recover precise velocity distribution inside of the vascular systems, especially for complex geometries, making it a unique technology that can be immediately translated into clinical practice. The Phase I research has unequivocally demonstrated the feasibility of developing the proposed system for dynamic blood flow measurements through laboratory experimentation and extensive simulation work. A detailed design of the Phase II system has been accomplished and system evaluation plans have been developed. Specifically, during Phase I we have identified six beta test sites where the Phase II system will be evaluated for various medical applications, the data from which will form a firm foundation for the Phase III commercialization. Considering the commercial potential of the innovative technologies we have filed a US patent application based on the work done so far. This project is highly relevant to NIH's mission because the precise real-time assessment of blood velocities will lead to more educated therapeutic decisions which could save more lives, improve health, and reduce operation cost. The expanded knowledge base will enhance the Nation's economic well-being and ensure a continued high return on the public investment in research.
项目摘要 血管系统中的疾病仍然是发达国家死亡率和发病率的主要原因 尽管近年来有很大的治疗进展。血流速度提供关键信息 需要诊断血管疾病,介入手术治疗计划以及监测 脑动脉畸形的血管内治疗。目前缺乏流动知识 特征是由有限的时间和空间分辨率以及电流的有限精度产生的 计量模式,避免对潜在的血液动力学及其与多个的相关性了解 脑血管疾病。 为了解决当前仪器的问题,我们正在开发超快,高分辨率的X射线 血流velocimetry系统将提供实时的体内定量血液速度图 血管内系统。设想的系统利用了三种变革技术。 1)强烈,低 成本,脉冲X射线源,其脉冲宽度向下至微秒和脉冲间持续时间 微秒,2)具有高空间分辨率,较大的活动区域和宽动态的超快X射线成像仪 范围和3)X射线到光转换器,它克服了电流的余辉和磁滞限制 高分辨率传感器。该系统将启用廉价的数字减法血管造影(DSA) 恢复血管系统内部的精确速度分布,尤其是对于复杂的几何形状,使其成为 可以立即转化为临床实践的独特技术。 第一阶段的研究明确证明了开发提出的系统的可行性 通过实验室实验和广泛的模拟工作,用于动态血流测量。一个 已经完成了II期系统的详细设计,系统评估计划已经 发达。具体而言,在第一阶段,我们确定了六个Beta测试站点,其中II期系统将是 评估各种医疗应用,这些数据将构成第三阶段的牢固基础 商业化。考虑到我们已提交的创新技术的商业潜力 根据到目前为止所做的工作,专利申请。 该项目与NIH的使命高度相关,因为对血液进行了精确的实时评估 速度将导致更受过教育的治疗决定,从而可以挽救更多的生命,改善健康和 降低操作成本。扩大的知识基础将增强国家的经济福祉,并确保 公众对研究的持续高回报。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hemodynamic characteristics in a cerebral aneurysm model using non-Newtonian blood analogues.
使用非牛顿血液类似物的脑动脉瘤模型中的血流动力学特征。
Machine Learning for Aiding Blood Flow Velocity Estimation Based on Angiography.
Effects of Pulsatile Flow Rate and Shunt Ratio in Bifurcated Distal Arteries on Hemodynamic Characteristics Involved in Two Patient-Specific Internal Carotid Artery Sidewall Aneurysms: A Numerical Study.
  • DOI:
    10.3390/bioengineering9070326
  • 发表时间:
    2022-07-18
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Yi, Hang;Johnson, Mark;Bramlage, Luke C.;Ludwig, Bryan;Yang, Zifeng
  • 通讯作者:
    Yang, Zifeng
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

BIPIN SINGH其他文献

BIPIN SINGH的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('BIPIN SINGH', 18)}}的其他基金

Blood Flow Velocimetry Using Digital Subtraction Angiography
使用数字减影血管造影进行血流速度测量
  • 批准号:
    9137447
  • 财政年份:
    2016
  • 资助金额:
    $ 57.25万
  • 项目类别:
Photonic Bandgap Structures for Improved Timing and Spatial Resolution in PET Det
用于提高 PET 检测中的定时和空间分辨率的光子带隙结构
  • 批准号:
    8001023
  • 财政年份:
    2010
  • 资助金额:
    $ 57.25万
  • 项目类别:
Multibeam Healing for Laser Micromachining in Manufacturing
制造业激光微加工的多光束修复
  • 批准号:
    7109099
  • 财政年份:
    2006
  • 资助金额:
    $ 57.25万
  • 项目类别:
Multibeam Healing for Laser Micromachining in Manufacturing
制造业激光微加工的多光束修复
  • 批准号:
    7224868
  • 财政年份:
    2006
  • 资助金额:
    $ 57.25万
  • 项目类别:
Digital 2-D Neutron Detector for Protein Function Studies
用于蛋白质功能研究的数字二维中子探测器
  • 批准号:
    7340184
  • 财政年份:
    2005
  • 资助金额:
    $ 57.25万
  • 项目类别:
Multibeam Healing for Laser Micromachining in Manufacturing
制造业激光微加工的多光束修复
  • 批准号:
    8209071
  • 财政年份:
    2005
  • 资助金额:
    $ 57.25万
  • 项目类别:
Digital 2-D Neutron Detector for Protein Function Studies
用于蛋白质功能研究的数字二维中子探测器
  • 批准号:
    7219722
  • 财政年份:
    2005
  • 资助金额:
    $ 57.25万
  • 项目类别:
Multibeam Healing for Laser Micromachining in Manufacturing
制造业激光微加工的多光束修复
  • 批准号:
    7670766
  • 财政年份:
    2005
  • 资助金额:
    $ 57.25万
  • 项目类别:

相似国自然基金

高维空气质量预测的初始场的张量建模与高性能算法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
守恒型高阶气体动理论统一算法及应用研究
  • 批准号:
    11902339
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
面向PM2.5空气污染的多重分形与协同群体智能算法研究
  • 批准号:
    61806068
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
融合气动力学修正算法的无人驾驶汽车造型形态推衍迭代设计方法
  • 批准号:
    51875306
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于地表-大气逐次解耦的陆地上空气溶胶偏振反演研究
  • 批准号:
    41601392
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
  • 批准号:
    10590913
  • 财政年份:
    2023
  • 资助金额:
    $ 57.25万
  • 项目类别:
A breakthrough mobile phone technology that aids in early detection of COPD
突破性手机技术有助于早期发现慢性阻塞性肺病
  • 批准号:
    10760409
  • 财政年份:
    2023
  • 资助金额:
    $ 57.25万
  • 项目类别:
Upper airway collapsibility, loop gain and arousal threshold: an integrative therapeutic approach to obstructive sleep apnea
上气道塌陷、循环增益和唤醒阈值:阻塞性睡眠呼吸暂停的综合治疗方法
  • 批准号:
    10859275
  • 财政年份:
    2023
  • 资助金额:
    $ 57.25万
  • 项目类别:
Noninvasive Diagnostic Markers of Lower Respiratory Tract Infection in Mechanically Ventilated Patients
机械通气患者下呼吸道感染的无创诊断标志物
  • 批准号:
    10697471
  • 财政年份:
    2023
  • 资助金额:
    $ 57.25万
  • 项目类别:
Extending Reach, Accuracy, and Therapeutic Capabilities: A Soft Robot for Peripheral Early-Stage Lung Cancer
扩大范围、准确性和治疗能力:用于周围早期肺癌的软机器人
  • 批准号:
    10637462
  • 财政年份:
    2023
  • 资助金额:
    $ 57.25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了