Detection and Attribution of Regional greenhouse gas Emissions in the UK (DARE-UK)

英国区域温室气体排放的检测和归因(DARE-UK)

基本信息

  • 批准号:
    NE/S004211/1
  • 负责人:
  • 金额:
    $ 131.06万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    未结题

项目摘要

In order to mitigate the effects of climate change, governments, private companies and individual citizens are taking action to reduce emissions of greenhouse gases (GHGs). Our project will provide new information that can be used to better evaluate the change in emissions that result from these actions. We will help the UK government track the effectiveness of emissions reductions policies that have been implemented to meet the targets laid out in the Climate Change Act (2008), which mandates that GHG emissions are reduced by 80% below 1990 levels by 2050. The UK has played a major part in recent scientific and technological advances in emissions reporting and evaluation. Its GHG emission inventory, which is compiled based on data relating to human activities and rates of emission from each activity, is world-leading. Furthermore, the UK is one of only two countries that regularly submits a second estimate of emissions, those derived from atmospheric measurements, as part of its annual United Nations Framework Convention on Climate Change (UNFCCC) submission. This second "top-down" estimate can be used to assess where uncertainties lie in the inventory and where further development is needed. However, limitations exist in our scientific knowledge and in our technical capabilities that prevent the UK, or any other country, from further improving its emissions reports through the incorporation of atmospheric data. Through the NERC Greenhouse Gas & Emissions Feedback programme, which ended in 2017, we demonstrated the ability to quantify the UK's net national GHG fluxes using atmospheric observations. However, we have not yet been able to separately estimate fossil fuel and biospheric carbon dioxide sources and sinks, or determine the major sectors driving changes in the UK's methane emissions. This proposal will develop new science to address these needs, and pave the way towards the next generation of GHG evaluation methodologies. Our work will span four key areas:1) Improving models of emissions from individual source and sink sectors to determine when and where GHG emissions to the atmosphere occur from both natural and anthropogenic systems.2) Utilising new surface and satellite atmospheric GHG observations, such as isotopic measurements of methane and carbon dioxide, and measurements of co-emitted or exchanged gases (oxygen, carbon monoxide, nitrogen dioxide and ethane) to provide information on emissions from different sectors.3) Utilising enhanced model-data fusion methods for making use of these new observations and for better quantifying uncertainties.4) Integrating data streams to determine the highest level of confidence in the UK's emissions estimate.To improve the transparency of national reports, scientists and policy makers have been strongly advocating for the combination of such methods in the reporting process. The UNFCCC, at its 2017 Conference of Parties, acknowledged the important role that emissions quantified through atmospheric observations could have in supporting inventory evaluation (SBSTA/2017/L.21). Through our close links to the inventory communities in the UK and around the world, the IPCC and to UK policy makers, we can ensure that our work will be used to update and improve the UK's GHG submission to the UNFCCC and will showcase methods of best-practice.
为了减轻气候变化的影响,政府、私营公司和公民个人正在采取行动减少温室气体(GHG)的排放。我们的项目将提供新信息,可用于更好地评估这些行动造成的排放变化。我们将帮助英国政府跟踪为实现《气候变化法案》(2008 年)中规定的目标而实施的减排政策的有效性,该法案要求到 2050 年将温室气体排放量比 1990 年的水平减少 80%。在排放报告和评估方面的最新科技进步中发挥了重要作用。其温室气体排放清单是根据人类活动相关数据和各项活动的排放率编制的,处于世界领先水平。此外,英国是仅有的两个定期提交第二次排放估算的国家之一,这些排放估算来自大气测量,作为其年度《联合国气候变化框架公约》(UNFCCC)提交的一部分。第二个“自上而下”的估计可用于评估清单中的不确定性以及需要进一步开发的地方。然而,我们的科学知识和技术能力存在局限性,阻止英国或任何其他国家通过纳入大气数据来进一步改进其排放报告。通过 NERC 温室气体和排放反馈计划(于 2017 年结束),我们展示了利用大气观测来量化英国国家温室气体净通量的能力。然而,我们尚未能够单独估计化石燃料和生物圈二氧化碳的源和汇,或确定推动英国甲烷排放变化的主要部门。该提案将开发新的科学来满足这些需求,并为下一代温室气体评估方法铺平道路。我们的工作将涵盖四个关键领域:1) 改进各个源和汇部门的排放模型,以确定自然和人为系统向大气排放温室气体的时间和地点。2) 利用新的地表和卫星大气温室气体观测数据,例如如甲烷和二氧化碳的同位素测量,以及共同排放或交换的气体(氧气、一氧化碳、二氧化氮和乙烷)的测量,以提供有关不同部门排放的信息。3) 利用增强的模型数据融合方法利用这些新的观察结果并更好地量化不确定性。4) 整合数据流以确定英国排放估算的最高置信度。为了提高国家报告的透明度,科学家和政策制定者一直大力倡导将报告过程中采用此类方法。 《联合国气候变化框架公约》在 2017 年缔约方大会上承认,通过大气观测量化的排放量在支持清单评估方面可发挥重要作用(SBSTA/2017/L.21)。通过我们与英国和世界各地的清单界、IPCC 和英国政策制定者的密切联系,我们可以确保我们的工作将用于更新和改进英国向 UNFCCC 提交的温室气体排放情况,并将展示最佳方法-实践。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Global Emissions of Perfluorocyclobutane (PFC-318, c-C4F8) Resulting from the Use of Hydrochlorofluorocarbon-22 (HCFC-22) Feedstock to Produce Polytetrafluoroethylene (PTFE) and related Fluorochemicals
使用氢氯氟碳-22 (HCFC-22) 原料生产聚四氟乙烯 (PTFE) 和相关含氟化学品导致的全氟环丁烷 (PFC-318、c-C4F8) 的全球排放
  • DOI:
    10.5194/acp-2021-857
  • 发表时间:
    2021-11-04
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    J. Mühle;L. Kuijpers;K. Stanley;M. Rigby;L. Western;Jooil Kim;Sunyoung Park;C. Harth;P. Krummel;P. Fraser;S. O'Doherty;P. Salameh;Rol;Schmidt;D. Young;R. Prinn;Ray H. J. Wang;R. Weiss
  • 通讯作者:
    R. Weiss
Two decades of flask observations of atmospheric dO2/N2, CO2, and APO at stations Lutjewad (the Netherlands) and Mace Head (Ireland) plus 3 years from Halley station (Antarctica)
二十年来对大气 dO 的烧瓶观测
  • DOI:
    http://dx.10.5194/essd-2021-213
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nguyen L
  • 通讯作者:
    Nguyen L
Atmospheric observations consistent with reported decline in the UK's methane emissions, 2013-2020
大气观测结果与 2013 年至 2020 年英国甲烷排放量下降情况一致
  • DOI:
    http://dx.10.5194/acp-2021-548
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lunt M
  • 通讯作者:
    Lunt M
Rapid increase in dichloromethane emissions from China inferred through atmospheric observations.
通过大气观测推断中国二氯甲烷排放量快速增加。
  • DOI:
    http://dx.10.1038/s41467-021-27592-y
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    An M
  • 通讯作者:
    An M
Atmospheric observations consistent with reported decline in the UK's methane emissions (2013-2020)
大气观测结果与报告的英国甲烷排放量下降一致(2013-2020 年)
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Rigby其他文献

Dendritic Polyglycerol Sulfates in the Prevention of Synaptic Loss and Mechanism of Action on Glia.
树突状聚甘油硫酸盐预防突触损失及其对神经胶质细胞的作用机制。
  • DOI:
    10.1021/acschemneuro.7b00301
  • 发表时间:
    2017-11-10
  • 期刊:
  • 影响因子:
    5
  • 作者:
    D. Maysinger;Jeff Ji;Ale;re Moquin;re;S. Hossain;M. Hancock;I. Zhang;P. K. Chang;Matthew Rigby;Madeleine Anthonisen;P. Grütter;J. Breitner;R. McKinney;S. Reimann;R. Haag;Gerhard Multhaup
  • 通讯作者:
    Gerhard Multhaup
Chapter 1: Update on Ozone Depleting Substances (ODSs) and Other Gases of Interest to the Montreal Protocol
第一章:《蒙特利尔议定书》关注的臭氧消耗物质 (ODS) 和其他气体的最新情况
  • DOI:
    10.1175/1520-0442(2004)017<2901:tfittt>2.0.co;2
  • 发表时间:
    2019-02-04
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    A. Engel;Matthew Rigby
  • 通讯作者:
    Matthew Rigby
A framework for implementing machine learning in healthcare based on the concepts of preconditions and postconditions
基于前置条件和后置条件概念的在医疗保健领域实施机器学习的框架
  • DOI:
    10.1016/j.health.2023.100155
  • 发表时间:
    2023-03-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. MacKay;W. Klement;P. Vanberkel;N. Lamond;R. Urquhart;Matthew Rigby
  • 通讯作者:
    Matthew Rigby
Response of mechanically-created neurites to extension.
机械产生的神经突对延伸的反应。
Rewiring Neuronal Circuits: A New Method for Fast Neurite Extension and Functional Neuronal Connection.
重新布线神经元电路:一种快速神经突延伸和功能性神经元连接的新方法。
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. H. Magdesian;M. H. Magdesian;Madeleine Anthonisen;G. M. Lopez;Xue Ying Chua;Matthew Rigby;Peter H. Grutter
  • 通讯作者:
    Peter H. Grutter

Matthew Rigby的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Rigby', 18)}}的其他基金

Investigating HALocarbon impacts on the global Environment (InHALE)
调查 HALocarbon 对全球环境的影响 (InHALE)
  • 批准号:
    NE/X00452X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 131.06万
  • 项目类别:
    Research Grant
OpenGHG: A community platform for greenhouse gas data science
OpenGHG:温室气体数据科学社区平台
  • 批准号:
    NE/V002996/1
  • 财政年份:
    2020
  • 资助金额:
    $ 131.06万
  • 项目类别:
    Research Grant
COVID-19: Rapid detection of the impact of COVID-19 on UK greenhouse gas emissions
COVID-19:快速检测 COVID-19 对英国温室气体排放的影响
  • 批准号:
    NE/V00963X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 131.06万
  • 项目类别:
    Research Grant
HUGS: a Hub for Uk Greenhouse gas data Science
HUGS:英国温室气体数据科学中心
  • 批准号:
    NE/S016155/1
  • 财政年份:
    2019
  • 资助金额:
    $ 131.06万
  • 项目类别:
    Research Grant
The Global Methane Budget
全球甲烷预算
  • 批准号:
    NE/N016548/1
  • 财政年份:
    2016
  • 资助金额:
    $ 131.06万
  • 项目类别:
    Research Grant
Are national HFC emissions reports suitable for global policy negotiation?
国家氢氟碳化合物排放报告是否适合全球政策谈判?
  • 批准号:
    NE/M014851/1
  • 财政年份:
    2015
  • 资助金额:
    $ 131.06万
  • 项目类别:
    Research Grant
Advanced computing architecture to support the estimation and reporting of UK GHG emissions
先进的计算架构支持英国温室气体排放的估算和报告
  • 批准号:
    NE/L013088/1
  • 财政年份:
    2013
  • 资助金额:
    $ 131.06万
  • 项目类别:
    Research Grant
Towards treaty verification of all non-CO2 long-lived greenhouse gases
对所有非二氧化碳长寿命温室气体进行条约核查
  • 批准号:
    NE/I021365/1
  • 财政年份:
    2012
  • 资助金额:
    $ 131.06万
  • 项目类别:
    Fellowship

相似国自然基金

面向决策策略优化的绩效归因分析及其在产业平台经济中的应用研究
  • 批准号:
    72371091
  • 批准年份:
    2023
  • 资助金额:
    39 万元
  • 项目类别:
    面上项目
基于知识推理的网络威胁归因技术研究
  • 批准号:
    62372129
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于非线性诊断归因的短期气候预测方法研究
  • 批准号:
    42375056
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
深度融合人机智能的研究生学术能力评价、归因与提升路径研究
  • 批准号:
    62377008
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于多源数据同化的东北地区陆地水储量变化模拟与归因研究
  • 批准号:
    42301436
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Detection and Attribution of Regional greenhouse gas Emissions in the UK (DARE-UK)
英国区域温室气体排放的检测和归因(DARE-UK)
  • 批准号:
    NE/S003614/1
  • 财政年份:
    2019
  • 资助金额:
    $ 131.06万
  • 项目类别:
    Research Grant
Detection and Attribution of Regional greenhouse gas Emissions in the UK (DARE-UK)
英国区域温室气体排放的检测和归因(DARE-UK)
  • 批准号:
    NE/S003746/1
  • 财政年份:
    2019
  • 资助金额:
    $ 131.06万
  • 项目类别:
    Research Grant
Detection and Attribution of Regional greenhouse gas Emissions in the UK (DARE-UK)
英国区域温室气体排放的检测和归因(DARE-UK)
  • 批准号:
    NE/S003819/1
  • 财政年份:
    2019
  • 资助金额:
    $ 131.06万
  • 项目类别:
    Research Grant
Detection and Attribution of Regional greenhouse gas Emissions in the UK (DARE-UK)
英国区域温室气体排放的检测和归因(DARE-UK)
  • 批准号:
    NE/S004505/1
  • 财政年份:
    2019
  • 资助金额:
    $ 131.06万
  • 项目类别:
    Research Grant
Detection and Attribution of Regional greenhouse gas Emissions in the UK (DARE-UK)
英国区域温室气体排放的检测和归因(DARE-UK)
  • 批准号:
    NE/S004947/1
  • 财政年份:
    2019
  • 资助金额:
    $ 131.06万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了