OpenGHG: A community platform for greenhouse gas data science
OpenGHG:温室气体数据科学社区平台
基本信息
- 批准号:NE/V002996/1
- 负责人:
- 金额:$ 70.48万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With numerous governments, cities, and organisations declaring climate emergencies and net-zero emissions targets, greenhouse gases (GHGs) are now the focus of international geopolitics and UK domestic policies. Furthermore, with the recent identification of violations of the Montreal Protocol, ozone depleting substances (ODS), are receiving renewed attention. It is therefore critically important to be able to analyse GHG and ODS emissions trends, examine spatial patterns, estimate future trajectories, and explore mitigation options in an open, transparent and publicly accessible way. Our proposed project will enable this, using state-of-the-art computing technology to create a platform, "OpenGHG".The estimation of GHG and ODS emissions requires close collaboration between a diverse group of scientists and stakeholders: "bottom-up" methods rely on statistical information collected by governments and industries, combined with scientific studies of the emissions intensity of particular activities, or the development of computer models that describe how human or natural processes produce or absorb GHGs. Complementary "top-down" techniques rely on instruments developed by spectroscopists and analytical chemists, the data from which are analysed along with outputs from meteorological models using advanced statistical methods. The data that is being generated by these diverse research and stakeholder communities is growing rapidly. However, the development of computational tools to help researchers aggregate data from such a wide range of sources and carry out and share analyses has not kept pace. Furthermore, given the sensitive nature of, for example, the inference of national GHG or ODS emissions, these communities must urgently take steps to make their analyses more transparent and reproducible.OpenGHG meets these needs, by providing an open, cloud-based, platform for researchers to share data and analysis methods and publish workflows. Furthermore, we have co-designed with our stakeholders, a range of tools that will facilitate the sharing of research outputs with governments, private companies and the public. The OpenGHG platform will:- Continuously incorporate and standardise up to date GHG and ODS measurements, bottom-up emission estimates, and a range of ancillary information related to GHG and ODS emissions. This data will be pulled automatically, or on demand, from a range of public archives, or pushed to the platform by data providers seeking to analyse or share their own data - Provide a wide range of analysis options, including the ability to design, publish and share custom workflows- Allow production of new top-down and bottom-up emissions estimates by accessing pre-existing and newly developed models and methods incorporated into the platform- Provide users with lower levels of computational expertise an easy-to-use interface for the most useful data analysis and visualisation. This will include comparisons of top-down and bottom-up estimates of emissions from different sectors of the economy, and potential future warming from different emissions scenarios.
随着众多政府、城市和组织宣布气候紧急情况和净零排放目标,温室气体 (GHG) 现在成为国际地缘政治和英国国内政策的焦点。此外,随着最近发现违反《蒙特利尔议定书》的行为,消耗臭氧层物质(ODS)再次受到关注。因此,能够以开放、透明和公开的方式分析温室气体和消耗臭氧层物质排放趋势、检查空间模式、估计未来轨迹并探索缓解方案至关重要。我们提出的项目将利用最先进的计算技术创建一个平台“OpenGHG”来实现这一目标。温室气体和消耗臭氧层物质排放量的估算需要不同的科学家和利益相关者群体之间的密切合作:“自下而上”这些方法依赖于政府和行业收集的统计信息,结合对特定活动排放强度的科学研究,或开发描述人类或自然过程如何产生或吸收温室气体的计算机模型。互补的“自上而下”技术依赖于光谱学家和分析化学家开发的仪器,使用先进的统计方法对仪器中的数据以及气象模型的输出进行分析。这些不同的研究和利益相关者社区生成的数据正在迅速增长。然而,帮助研究人员从如此广泛的来源汇总数据并进行和共享分析的计算工具的发展却没有跟上步伐。此外,考虑到国家温室气体或消耗臭氧层物质排放推断等的敏感性,这些社区必须紧急采取措施,使其分析更加透明和可重复。OpenGHG 通过提供一个开放的、基于云的平台来满足这些需求供研究人员共享数据和分析方法并发布工作流程。此外,我们与利益相关者共同设计了一系列工具,以促进与政府、私营公司和公众分享研究成果。 OpenGHG 平台将: - 持续整合最新的温室气体和消耗臭氧层物质测量、自下而上的排放估算以及一系列与温室气体和消耗臭氧层物质排放相关的辅助信息并使其标准化。这些数据将自动或按需从一系列公共档案中提取,或由寻求分析或共享自己数据的数据提供商推送到平台 - 提供广泛的分析选项,包括设计、发布的能力并共享自定义工作流程 - 通过访问平台中现有的和新开发的模型和方法,允许生成新的自上而下和自下而上的排放估算 - 为计算专业知识水平较低的用户提供易于使用的界面最有用的数据分析和可视化。这将包括对不同经济部门排放量的自上而下和自下而上估计的比较,以及不同排放情景下未来潜在的变暖。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A machine learning emulator for Lagrangian particle dispersion model footprints: a case study using NAME
用于拉格朗日粒子分散模型足迹的机器学习模拟器:使用 NAME 的案例研究
- DOI:http://dx.10.5194/egusphere-2022-1174
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Fillola E
- 通讯作者:Fillola E
Joint inference of CFC lifetimes and banks suggests previously unidentified emissions.
对 CFC 寿命和库存的联合推断表明了先前未确定的排放量。
- DOI:http://dx.10.1038/s41467-021-23229-2
- 发表时间:2021
- 期刊:
- 影响因子:16.6
- 作者:Lickley M
- 通讯作者:Lickley M
Global emissions of perfluorocyclobutane (PFC-318, c-C4F8) resulting from the use of hydrochlorofluorocarbon-22 (HCFC-22) feedstock to produce polytetrafluoroethylene (PTFE) and related fluorochemicals
全氟环丁烷的全球排放量(PFC-318、
- DOI:http://dx.10.5194/acp-22-3371-2022
- 发表时间:2022
- 期刊:
- 影响因子:6.3
- 作者:Mühle J
- 通讯作者:Mühle J
Global Emissions of Perfluorocyclobutane (PFC-318, c-C4F8) Resulting from the Use of Hydrochlorofluorocarbon-22 (HCFC-22) Feedstock to Produce Polytetrafluoroethylene (PTFE) and related Fluorochemicals
全氟环丁烷 (PFC-318, c-C) 的全球排放量
- DOI:http://dx.10.5194/acp-2021-857
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Mühle J
- 通讯作者:Mühle J
Western European emission estimates of CFC-11, CFC-12 and CCl 4 derived from atmospheric measurements from 2008 to 2021
根据 2008 年至 2021 年大气测量得出的西欧 CFC-11、CFC-12 和 CCl 4 排放估算
- DOI:http://dx.10.5194/acp-23-7383-2023
- 发表时间:2023
- 期刊:
- 影响因子:6.3
- 作者:Redington A
- 通讯作者:Redington A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Rigby其他文献
Dendritic Polyglycerol Sulfates in the Prevention of Synaptic Loss and Mechanism of Action on Glia.
树突状聚甘油硫酸盐预防突触损失及其对神经胶质细胞的作用机制。
- DOI:
10.1021/acschemneuro.7b00301 - 发表时间:
2017-11-10 - 期刊:
- 影响因子:5
- 作者:
D. Maysinger;Jeff Ji;Ale;re Moquin;re;S. Hossain;M. Hancock;I. Zhang;P. K. Chang;Matthew Rigby;Madeleine Anthonisen;P. Grütter;J. Breitner;R. McKinney;S. Reimann;R. Haag;Gerhard Multhaup - 通讯作者:
Gerhard Multhaup
Chapter 1: Update on Ozone Depleting Substances (ODSs) and Other Gases of Interest to the Montreal Protocol
第一章:《蒙特利尔议定书》关注的臭氧消耗物质 (ODS) 和其他气体的最新情况
- DOI:
10.1175/1520-0442(2004)017<2901:tfittt>2.0.co;2 - 发表时间:
2019-02-04 - 期刊:
- 影响因子:4.9
- 作者:
A. Engel;Matthew Rigby - 通讯作者:
Matthew Rigby
Response of mechanically-created neurites to extension.
机械产生的神经突对延伸的反应。
- DOI:
10.1016/j.jmbbm.2019.06.015 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:0
- 作者:
Madeleine Anthonisen;Matthew Rigby;M. H. Sangji;Xue Ying Chua;P. Grütter - 通讯作者:
P. Grütter
A framework for implementing machine learning in healthcare based on the concepts of preconditions and postconditions
基于前置条件和后置条件概念的在医疗保健领域实施机器学习的框架
- DOI:
10.1016/j.health.2023.100155 - 发表时间:
2023-03-01 - 期刊:
- 影响因子:0
- 作者:
C. MacKay;W. Klement;P. Vanberkel;N. Lamond;R. Urquhart;Matthew Rigby - 通讯作者:
Matthew Rigby
Rewiring Neuronal Circuits: A New Method for Fast Neurite Extension and Functional Neuronal Connection.
重新布线神经元电路:一种快速神经突延伸和功能性神经元连接的新方法。
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
M. H. Magdesian;M. H. Magdesian;Madeleine Anthonisen;G. M. Lopez;Xue Ying Chua;Matthew Rigby;Peter H. Grutter - 通讯作者:
Peter H. Grutter
Matthew Rigby的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Rigby', 18)}}的其他基金
Investigating HALocarbon impacts on the global Environment (InHALE)
调查 HALocarbon 对全球环境的影响 (InHALE)
- 批准号:
NE/X00452X/1 - 财政年份:2022
- 资助金额:
$ 70.48万 - 项目类别:
Research Grant
COVID-19: Rapid detection of the impact of COVID-19 on UK greenhouse gas emissions
COVID-19:快速检测 COVID-19 对英国温室气体排放的影响
- 批准号:
NE/V00963X/1 - 财政年份:2020
- 资助金额:
$ 70.48万 - 项目类别:
Research Grant
HUGS: a Hub for Uk Greenhouse gas data Science
HUGS:英国温室气体数据科学中心
- 批准号:
NE/S016155/1 - 财政年份:2019
- 资助金额:
$ 70.48万 - 项目类别:
Research Grant
Detection and Attribution of Regional greenhouse gas Emissions in the UK (DARE-UK)
英国区域温室气体排放的检测和归因(DARE-UK)
- 批准号:
NE/S004211/1 - 财政年份:2019
- 资助金额:
$ 70.48万 - 项目类别:
Research Grant
Are national HFC emissions reports suitable for global policy negotiation?
国家氢氟碳化合物排放报告是否适合全球政策谈判?
- 批准号:
NE/M014851/1 - 财政年份:2015
- 资助金额:
$ 70.48万 - 项目类别:
Research Grant
Advanced computing architecture to support the estimation and reporting of UK GHG emissions
先进的计算架构支持英国温室气体排放的估算和报告
- 批准号:
NE/L013088/1 - 财政年份:2013
- 资助金额:
$ 70.48万 - 项目类别:
Research Grant
Towards treaty verification of all non-CO2 long-lived greenhouse gases
对所有非二氧化碳长寿命温室气体进行条约核查
- 批准号:
NE/I021365/1 - 财政年份:2012
- 资助金额:
$ 70.48万 - 项目类别:
Fellowship
相似国自然基金
社区生鲜平台运营模式选择及配送策略研究
- 批准号:72371152
- 批准年份:2023
- 资助金额:43 万元
- 项目类别:面上项目
数据赋能的社区居家医养服务平台供需双边匹配模型与应用研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
电商平台战略性社区参与、行动者网络与农村电商社区能力构建研究
- 批准号:71972023
- 批准年份:2019
- 资助金额:47 万元
- 项目类别:面上项目
社区轻度认知损害中医健脑云平台的构建及干预效果评价
- 批准号:81973921
- 批准年份:2019
- 资助金额:52 万元
- 项目类别:面上项目
入门激励政策对在线医疗社区用户与平台影响研究
- 批准号:71901127
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CCRI: Grand: Quori 2.0: Uniting, Broadening, and Sustaining a Research Community Around a Modular Social Robot Platform
协作研究:CCRI:盛大:Quori 2.0:围绕模块化社交机器人平台联合、扩大和维持研究社区
- 批准号:
2235042 - 财政年份:2023
- 资助金额:
$ 70.48万 - 项目类别:
Continuing Grant
Collaborative Research: CyberTraining: Implementation: Medium: CyberTraining of Construction (CyCon) Research Workforce Through an Educational and Community Engagement Platform
协作研究:网络培训:实施:媒介:通过教育和社区参与平台对建筑 (CyCon) 研究人员进行网络培训
- 批准号:
2229604 - 财政年份:2023
- 资助金额:
$ 70.48万 - 项目类别:
Standard Grant
ESSENCE (Enabling translation of Science to Service to ENhance Depression CarE) Scale-Up
ESSENCE(将科学转化为服务,以增强抑郁症 CarE)规模化
- 批准号:
10883855 - 财政年份:2023
- 资助金额:
$ 70.48万 - 项目类别:
Implementing and Scaling the STEADI Fall Prevention Algorithm Using a Conversational Relational Agent for Community-Dwelling Older Adults with and without Mild Cognitive Impairment (MCI).
使用对话关系代理为社区居住的患有或不患有轻度认知障碍 (MCI) 的老年人实施和扩展 STEADI 跌倒预防算法。
- 批准号:
10822816 - 财政年份:2023
- 资助金额:
$ 70.48万 - 项目类别:
A proprietary digital platform for precision patient identification and enrollment of clinical trials for rare kidney diseases
用于精确识别患者和注册罕见肾脏疾病临床试验的专有数字平台
- 批准号:
10822581 - 财政年份:2023
- 资助金额:
$ 70.48万 - 项目类别: