HUGS: a Hub for Uk Greenhouse gas data Science
HUGS:英国温室气体数据科学中心
基本信息
- 批准号:NE/S016155/1
- 负责人:
- 金额:$ 27.33万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Atmospheric observations of greenhouse gas (GHG) concentrations can be used to estimate emissions when combined with models of atmospheric transport and an understanding of the emission sources surrounding the observations. These top-down methods are complementary to the bottom-up, accounting-based, approaches that are currently used to create national GHG inventories. To improve the transparency and accuracy of these inventories and better evaluate progress on emissions reduction policies, scientists and policy makers have been advocating for the integration of top-down methods into the emissions reporting process. The United Nations Framework Convention on Climate Change (UNFCCC) recently acknowledged the important role that emissions quantified through atmospheric observations could have in supporting inventory evaluation (UNFCCC, COP 23, SBSTA/2017/L.21). The UK GHG science community is leading the world in this regard, with a dedicated national monitoring network, a range of regional networks and regular over-passes by various satellites. Currently, the UK is one of only three countries on Earth to include top-down estimates in its National Inventory Report to the UNFCCC. The process of inferring emissions from GHG observations is extremely data intensive. In order to understand the observed variability in GHG concentrations, scientists must combine data from diverse networks in different environments and using different instrumentation, understand the distribution of potential sources and land use types in the vicinity of the sensor and be able to accurately model the atmospheric processes that transport GHGs from sources to the measurement site. Therefore, to date, analysis of GHG data is largely carried out on a case-by-case basis for individual research papers.Here, we propose that new developments in cloud computing are required to help GHG scientists overcome some of the major obstacles for the integration of GHG networks and the production of operational, higher resolution GHG flux estimates. We will create the cloud-based framework for a UK GHG data science "hub". This hub will allow users (GHG scientists and, eventually, the public) to:- Improve the flow of information to and from GHG data providers, because cloud services are not behind institutional firewalls - Operationalise the processing of datasets into common formats, which can then be made globally accessible to users (subject to any required usage restrictions) - Automatically trigger operations on new data, such as the running of chemical transport models, which are essential for the interpretation of GHG data - Analyse data, model output and ancillary information (maps of land use, emissions inventories, etc.) on the cloud, without the need for individual users to download datasets and run models (requiring technical expertise)- Visualise data, models and other relevant information on a web-based platformOur team is world leading in the measurement and analysis of GHGs, cloud computing and spatial mapping. This project will rely heavily on a cloud platform (built as part of the EPSRC-funded BioSimSpace project) and GHG analysis codebase that has already been developed by team members. These tools are built on top of standard tools such as Jupyter notebooks, distributed object stores, and serverless functions. It is this expertise and these open tools that will allow us to develop the framework for our data science hub that will be extensible by GHG researchers at the end of this project.We envisage that such a hub could be at the centre of the UK's large and growing GHG science community, allowing scientists to upload, analyse and visualise their data on a single platform, enhancing data integration and sharing between groups. Ultimately, this platform could be extended to allow the public to interact with GHG data, letting them learn whether the UK's emissions reductions efforts are reflected in atmospheric observations.
结合大气传输模型和对观测周围排放源的了解,温室气体 (GHG) 浓度的大气观测可用于估算排放量。这些自上而下的方法是对目前用于创建国家温室气体清单的自下而上、基于核算的方法的补充。为了提高清单的透明度和准确性,并更好地评估减排政策的进展,科学家和政策制定者一直主张将自上而下的方法纳入排放报告流程。联合国气候变化框架公约 (UNFCCC) 最近承认,通过大气观测量化的排放量在支持清单评估方面可发挥重要作用(UNFCCC、COP 23、SBSTA/2017/L.21)。英国温室气体科学界在这方面处于世界领先地位,拥有专门的国家监测网络、一系列区域网络和各种卫星的定期跨越。目前,英国是地球上仅有的三个在向《联合国气候变化框架公约》提交的国家清单报告中纳入自上而下估算的国家之一。根据温室气体观测推断排放量的过程需要大量数据。为了了解观测到的温室气体浓度变化,科学家必须结合来自不同环境和使用不同仪器的不同网络的数据,了解传感器附近潜在源的分布和土地利用类型,并能够准确地模拟大气将温室气体从源头输送到测量地点的过程。因此,迄今为止,温室气体数据的分析主要是针对个别研究论文进行个案分析。在此,我们提出需要云计算的新发展来帮助温室气体科学家克服温室气体研究的一些主要障碍。整合温室气体网络并生成可操作的、更高分辨率的温室气体通量估算。我们将为英国温室气体数据科学“中心”创建基于云的框架。该中心将允许用户(温室气体科学家,最终是公众): - 改善温室气体数据提供商之间的信息流,因为云服务不在机构防火墙后面 - 将数据集处理操作为通用格式,这可以然后可供全球用户访问(受到任何所需的使用限制) - 自动触发新数据的操作,例如运行化学品运输模型,这对于解释温室气体数据至关重要 - 分析数据、模型输出和辅助信息(土地利用地图,排放清单等)在云端,无需个人用户下载数据集和运行模型(需要技术专业知识) - 在基于网络的平台上可视化数据、模型和其他相关信息我们的团队在测量和分析方面处于世界领先地位温室气体分析、云计算和空间测绘。该项目将严重依赖云平台(作为 EPSRC 资助的 BioSimSpace 项目的一部分而构建)和团队成员已经开发的温室气体分析代码库。这些工具构建在 Jupyter 笔记本、分布式对象存储和无服务器功能等标准工具之上。正是这种专业知识和这些开放工具将使我们能够开发数据科学中心的框架,该框架将由温室气体研究人员在本项目结束时进行扩展。我们设想这样的中心可能是英国大型数据科学中心的中心。不断发展的温室气体科学社区,使科学家能够在单一平台上上传、分析和可视化他们的数据,从而增强群体之间的数据集成和共享。最终,这个平台可以扩展到允许公众与温室气体数据互动,让他们了解英国的减排努力是否反映在大气观测中。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bayesian spatiotemporal inference of trace gas emissions using an integrated nested Laplacian approximation and Gaussian Markov random fields
使用集成嵌套拉普拉斯近似和高斯马尔可夫随机场对痕量气体排放进行贝叶斯时空推断
- DOI:http://dx.10.5194/gmd-2019-66
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Western L
- 通讯作者:Western L
Estimates of North African Methane Emissions from 2010 to 2017 Using GOSAT Observations
使用 GOSAT 观测数据估算 2010 年至 2017 年北非甲烷排放量
- DOI:http://dx.10.1021/acs.estlett.1c00327
- 发表时间:2021
- 期刊:
- 影响因子:10.9
- 作者:Western L
- 通讯作者:Western L
Bayesian spatio-temporal inference of trace gas emissions using an integrated nested Laplacian approximation and Gaussian Markov random fields
使用集成嵌套拉普拉斯近似和高斯马尔可夫随机场对痕量气体排放进行贝叶斯时空推断
- DOI:10.5194/gmd-13-2095-2020
- 发表时间:2019-06-05
- 期刊:
- 影响因子:5.1
- 作者:L. Western;Z. Sha;M. Rigby;A. Ganesan;A. Manning;K. Stanley;S. O'Doherty;D. Young;J. Rougier
- 通讯作者:J. Rougier
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Rigby其他文献
Chapter 1: Update on Ozone Depleting Substances (ODSs) and Other Gases of Interest to the Montreal Protocol
第一章:《蒙特利尔议定书》关注的臭氧消耗物质 (ODS) 和其他气体的最新情况
- DOI:
10.1175/1520-0442(2004)017<2901:tfittt>2.0.co;2 - 发表时间:
2019-02-04 - 期刊:
- 影响因子:4.9
- 作者:
A. Engel;Matthew Rigby - 通讯作者:
Matthew Rigby
Dendritic Polyglycerol Sulfates in the Prevention of Synaptic Loss and Mechanism of Action on Glia.
树突状聚甘油硫酸盐预防突触损失及其对神经胶质细胞的作用机制。
- DOI:
10.1021/acschemneuro.7b00301 - 发表时间:
2017-11-10 - 期刊:
- 影响因子:5
- 作者:
D. Maysinger;Jeff Ji;Ale;re Moquin;re;S. Hossain;M. Hancock;I. Zhang;P. K. Chang;Matthew Rigby;Madeleine Anthonisen;P. Grütter;J. Breitner;R. McKinney;S. Reimann;R. Haag;Gerhard Multhaup - 通讯作者:
Gerhard Multhaup
Response of mechanically-created neurites to extension.
机械产生的神经突对延伸的反应。
- DOI:
10.1016/j.jmbbm.2019.06.015 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:0
- 作者:
Madeleine Anthonisen;Matthew Rigby;M. H. Sangji;Xue Ying Chua;P. Grütter - 通讯作者:
P. Grütter
A framework for implementing machine learning in healthcare based on the concepts of preconditions and postconditions
基于前置条件和后置条件概念的在医疗保健领域实施机器学习的框架
- DOI:
10.1016/j.health.2023.100155 - 发表时间:
2023-03-01 - 期刊:
- 影响因子:0
- 作者:
C. MacKay;W. Klement;P. Vanberkel;N. Lamond;R. Urquhart;Matthew Rigby - 通讯作者:
Matthew Rigby
Rewiring Neuronal Circuits: A New Method for Fast Neurite Extension and Functional Neuronal Connection.
重新布线神经元电路:一种快速神经突延伸和功能性神经元连接的新方法。
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
M. H. Magdesian;M. H. Magdesian;Madeleine Anthonisen;G. M. Lopez;Xue Ying Chua;Matthew Rigby;Peter H. Grutter - 通讯作者:
Peter H. Grutter
Matthew Rigby的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Rigby', 18)}}的其他基金
Investigating HALocarbon impacts on the global Environment (InHALE)
调查 HALocarbon 对全球环境的影响 (InHALE)
- 批准号:
NE/X00452X/1 - 财政年份:2022
- 资助金额:
$ 27.33万 - 项目类别:
Research Grant
OpenGHG: A community platform for greenhouse gas data science
OpenGHG:温室气体数据科学社区平台
- 批准号:
NE/V002996/1 - 财政年份:2020
- 资助金额:
$ 27.33万 - 项目类别:
Research Grant
COVID-19: Rapid detection of the impact of COVID-19 on UK greenhouse gas emissions
COVID-19:快速检测 COVID-19 对英国温室气体排放的影响
- 批准号:
NE/V00963X/1 - 财政年份:2020
- 资助金额:
$ 27.33万 - 项目类别:
Research Grant
Detection and Attribution of Regional greenhouse gas Emissions in the UK (DARE-UK)
英国区域温室气体排放的检测和归因(DARE-UK)
- 批准号:
NE/S004211/1 - 财政年份:2019
- 资助金额:
$ 27.33万 - 项目类别:
Research Grant
Are national HFC emissions reports suitable for global policy negotiation?
国家氢氟碳化合物排放报告是否适合全球政策谈判?
- 批准号:
NE/M014851/1 - 财政年份:2015
- 资助金额:
$ 27.33万 - 项目类别:
Research Grant
Advanced computing architecture to support the estimation and reporting of UK GHG emissions
先进的计算架构支持英国温室气体排放的估算和报告
- 批准号:
NE/L013088/1 - 财政年份:2013
- 资助金额:
$ 27.33万 - 项目类别:
Research Grant
Towards treaty verification of all non-CO2 long-lived greenhouse gases
对所有非二氧化碳长寿命温室气体进行条约核查
- 批准号:
NE/I021365/1 - 财政年份:2012
- 资助金额:
$ 27.33万 - 项目类别:
Fellowship
相似国自然基金
IRF4杂合突变导致生发中心反应异常和浆细胞分化缺陷的分子机制
- 批准号:32330033
- 批准年份:2023
- 资助金额:216 万元
- 项目类别:重点项目
金属杂原子分子筛M-H-SUZ-4“双活性中心”构建及催化二甲醚羰基化反应机制研究
- 批准号:22302115
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数据安全隐私保护背景下多中心联邦因果推断方法研究
- 批准号:82330108
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
中心体蛋白Ccdc159缺失所致无头精子综合症的发病机制研究
- 批准号:82371614
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
ADRA2a调控滤泡辅助性T细胞与生发中心B细胞相互作用参与哮喘发病的机制研究
- 批准号:82370025
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
国際政治における地理的近接性の再検討――戦後英独の太平洋認識を中心に
重新考虑国际政治中的地理邻近性:关注战后英国和德国对太平洋的看法
- 批准号:
24KJ0855 - 财政年份:2024
- 资助金额:
$ 27.33万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Infrastructure and Services - The UK Health Data Research Alliance and Hub Network
基础设施和服务 - 英国健康数据研究联盟和中心网络
- 批准号:
HDR-23001 - 财政年份:2023
- 资助金额:
$ 27.33万 - 项目类别:
Intramural
UK National Clean Maritime Research Hub
英国国家清洁海事研究中心
- 批准号:
EP/Y024605/1 - 财政年份:2023
- 资助金额:
$ 27.33万 - 项目类别:
Research Grant
UK-HyRES: Hub for Research Challenges in Hydrogen and Alternative Liquid Fuels
UK-HyRES:氢和替代液体燃料研究挑战中心
- 批准号:
EP/X038963/1 - 财政年份:2023
- 资助金额:
$ 27.33万 - 项目类别:
Research Grant