Sustainable Style for Clean Growth: Innovating Textile Production through Engineering Biology

清洁增长的可持续方式:通过工程生物学创新纺织品生产

基本信息

  • 批准号:
    BB/Y007735/1
  • 负责人:
  • 金额:
    $ 218.53万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

This Engineering Biology Mission Award project is an intensive 2-year program designed to use synthetic biology and microbial fermentation to rapidly bring Clean Growth benefits to one the worst-polluting sectors of global industry: fashion. The project brings together a set of expert teams based in Newcastle and London with UK SMEs and start-ups that are transforming the fashion sector via their use of microbially-made products. Our combined research efforts will be put to task on rapidly transforming the biological production of an exciting, innovative and environmentally friendly product that can rapidly be adopted by the fashion sector: microbial leather. We will develop and optimise a variety of sustainable and efficient biomanufacturing processes for producing a class of microbial leather based on bacterial cellulose, a high-performance biomaterial grown in high yield at low cost from the bacteria found in Kombucha fermentations. Our project is designed to use engineering biology approaches to immediately increase the efficiency of the environmentally friendly manufacturing process of producing this microbial leather. We will work together to engineer bacterial strains and use synthetic biology methods to enable high efficiency use of waste feedstocks, efficient water and nutrient usage, and innovative bio-based treatments for desirable properties, such as colouration, patterns, coatings and additives. The societal goal of this work is to create sustainable and renewable processes for a circular economy for microbial leather production and end-of-life. The project will contribute to the UK's Net-Zero targets by reducing carbon emissions and petrochemical use in the production of leather alternatives. Notably fashion is a crucial sector for UK economic growth but is entirely dependent on the global textiles industry, an industry that causes up to 10% of global carbon emissions, produces 20% of wastewater and 35% of marine microplastic pollution. This industry is projected to use up to 25% of the global carbon budget by 2050, and as such it is a key target for innovation for clean growth if the world is to meet its sustainability goals. Of all materials used in fashion, leather is particularly problematic, as cattle are the leading driver of deforestation, and chrome tanning creates widespread chemical pollution. No other material comes close for its all-round negative impact, and current plastics-based leather alternatives require incineration or landfill at their end of life, and so are not the desired alternative. For microbial leather to emerge as the ideal replacement to the world's use of bovine leather, we need to address 4 main technical challenges: 1: Reducing the need for using expensive sugar in the growth of bacterial cellulose 2: Removing the need to have separate processes for dyeing and patterning a material 3: Removing reliance on petrochemical-derived additives and toxic crosslinking methods 4: Improving durability but be able to still ensure natural degradation at end-of-life We aim to address these challenges by leveraging engineered biology for efficient material fabrication and controllable modification in a minimal number of steps. We will do this by engineering enzymes, microbes and microbial communities (E. coli, yeast, bacillus and Komagataeibacter) doing so in collaboration with the ideal set of UK industry partners; Colorifix, Modern Synthesis and Brewlab, With their help we will conduct pilot-scale production runs and process tests, and to ensure impact and a future beyond this award we will also engage with wider stakeholders, such as target industrial consumers, fashion designers and sustainability analysts that can help us determine the ideal route-to-market. In doing this project we will accelerate the UK's leadership in clean growth in fashion by helping replace leather with a low-impact, highly desirable microbially-made alternative.
该工程生物学任务奖项目是一项密集的2年计划,旨在使用合成生物学和微生物发酵迅速为全球行业的最糟糕的领域带来清洁增长益处:时尚。该项目汇集了一组位于纽卡斯尔和伦敦的专家团队与英国中小型企业和初创企业一起通过使用微生物制造的产品来改变时尚行业的。我们的综合研究工作将旨在迅速改变令人兴奋,创新和环保产品的生物生产,该产品可以被时装领域迅速采用:微生物皮革。我们将开发和优化各种可持续和高效的生物制造过程,用于生产基于细菌纤维素的微生物皮革,这是一种高性能的生物材料,其高产的高产,以低成本,来自康普茶发酵的细菌。我们的项目旨在使用工程生物学方法立即提高生产这种微生物皮革的环保制造过程的效率。我们将共同努力来设计细菌菌株,并使用合成生物学方法,以高效地使用废物原料,有效的水和营养用法,以及基于创新的生物处理方法,用于理想的特性,例如着色,图案,图案,涂料,涂料,添加剂和添加剂。这项工作的社会目标是为微生物皮革生产和寿命终止的循环经济创造可持续和可再生的过程。该项目将通过减少碳排放量和石化替代品生产中的碳排放和石化使用来为英国的零净目标做出贡献。值得注意的是,时尚是英国经济增长的关键部门,但完全取决于全球纺织业行业,该行业最多占全球碳排放量的10%,占废水的20%和35%的海洋微塑性污染。到2050年,该行业预计将使用多达25%的全球碳预算,因此,如果世界要符合其可持续性目标,它是清洁增长创新的关键目标。在时尚中使用的所有材料中,皮革尤其有问题,因为牛是森林砍伐的主要驱动力,而镀铬晒黑会造成广泛的化学污染。没有其他材料对其全面的负面影响接近,目前基于塑料的皮革替代品需要在生命的尽头进行焚化或垃圾填埋场,因此并不是所需的替代方案。为了使微生物皮革成为世界使用牛皮革的理想替代品,我们需要解决4个主要技术挑战:1:减少在细菌纤维素的生长中使用昂贵的糖的需求2:消除需要单独的过程,以使材料染色并恢复耐用的效果,以确保有效的效率和有毒的方法:自然降解在终止生命时,我们旨在通过利用工程生物学来解决有效的材料制造和可控制的修改,以最少的步骤来应对这些挑战。我们将通过工程酶,微生物和微生物群落(大肠杆菌,酵母,芽孢杆菌和komagataeibacter)与理想的英国行业合作伙伴合作来做到这一点; Chorsifix,Modern Connthesis和Brewlab,借助他们的帮助,我们将进行试验规模的生产和过程测试,并确保影响和未来以外的奖项,我们还将与更广泛的利益相关者互动,例如目标工业消费者,时装设计师和可持续性分析师,这些分析师可以帮助我们确定理想的市场路线。在进行此项目时,我们将通过使用低影响力,高度理想的微生物制作的替代品来替换皮革,从而加快英国在时尚型清洁增长方面的领导。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Ellis其他文献

Chemical and Structural Information from the Enamel of a Troodon Tooth Leading to an Understanding of Diet and Environment
伤齿龙牙釉质的化学和结构信息有助于了解饮食和环境
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    R. Feng;J. Maley;G. Schatte;R. Hoffmeyer;K. Brink;Thomas Ellis;Donald J. Brinkman;R. Sammynaiken
  • 通讯作者:
    R. Sammynaiken
Borderline Dysplasia with Acetabular Retroversion: Key Findings in Large Hip Arthroscopy Study Group
  • DOI:
    10.1016/j.arthro.2020.12.087
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dominic S. Carreira;Benjamin Kivlan;Shane Nho;Andrew Wolff;John Salvo;John Christoforetti;Thomas Ellis;Dominic Carreira
  • 通讯作者:
    Dominic Carreira
Changes in Satisfaction and Functional Outcomes between Years One and Two After Hip Preservation Surgery
  • DOI:
    10.1016/j.arthro.2020.12.091
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dominic Carreira;Dean Matsuda;Benjamin Kivlan;Shane Nho;Andrew Wolff;John Salvo;John Christoforetti;Thomas Ellis
  • 通讯作者:
    Thomas Ellis
Synchrotron FTIR as a tool for studying populations and individual living cells of green algae
同步加速器 FTIR 作为研究绿藻种群和个体活细胞的工具
  • DOI:
    10.1101/808220
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kira L. Goff;Thomas Ellis;K. Wilson
  • 通讯作者:
    K. Wilson
Iliopsoas Pathology: Game-changing Findings from a Large Hip Arthroscopy Study Group
  • DOI:
    10.1016/j.arthro.2020.12.115
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dominic S. Carreira;Benjamin Kivlan;Shane Nho;Andrew Wolff;John Salvo;John Christoforetti;Thomas Ellis;Dominic Carreira
  • 通讯作者:
    Dominic Carreira

Thomas Ellis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Ellis', 18)}}的其他基金

CBET-EPSRC - Grown Engineered Materials (GEMs): synthetic consortia for biomanufacturing tunable composites
CBET-EPSRC - 生长工程材料 (GEM):生物制造可调复合材料的合成联盟
  • 批准号:
    EP/S032215/1
  • 财政年份:
    2020
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Research Grant
[Australia] Construction of Synthetic Yeast Chromosomes using BioFoundries in United Kingdom and Australia
[澳大利亚] 使用英国和澳大利亚的 BioFoundries 构建合成酵母染色体
  • 批准号:
    BB/S020411/1
  • 财政年份:
    2019
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Research Grant
Towards Genomes-to-Design: Building and Testing a Minimal Essential Chromosome
迈向基因组设计:构建和测试最小必需染色体
  • 批准号:
    BB/R002614/1
  • 财政年份:
    2018
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Research Grant
Grow-Your-Own Composites: Programming Diverse Material Properties for Defence into Engineered Bacterial Cellulose
自行种植复合材料:将用于防御的多种材料特性编程到工程细菌纤维素中
  • 批准号:
    EP/N026489/1
  • 财政年份:
    2016
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Research Grant
14TSB_SynBio A High Throughput Miniaturised Mass Spectrometry Tool for Profiling Synthetic Design Libraries
14TSB_SynBio 用于分析合成设计文库的高通量小型化质谱工具
  • 批准号:
    BB/M005577/1
  • 财政年份:
    2014
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Research Grant
Engineering Fellowships for Growth: Advanced synthetic biology measurement to enable programmable functional biomaterials
增长工程奖学金:先进的合成生物学测量,以实现可编程功能生物材料
  • 批准号:
    EP/M002306/1
  • 财政年份:
    2014
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Fellowship
Genome Organisation for Optimising Synthetic Secondary Metabolism
用于优化合成次级代谢的基因组组织
  • 批准号:
    BB/K006290/1
  • 财政年份:
    2013
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Research Grant
The Sc2.0 UK Genome Engineering Resource (SUGER)
Sc2.0 英国基因组工程资源 (SUGER)
  • 批准号:
    BB/K019791/1
  • 财政年份:
    2013
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Research Grant
Engineered burden-based feedback for robust and optimised synthetic biology
工程化的基于负荷的反馈,用于稳健和优化的合成生物学
  • 批准号:
    EP/J021849/1
  • 财政年份:
    2013
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Research Grant
Engineered security systems for environmental synthetic biology
环境合成生物学工程安全系统
  • 批准号:
    BB/J019720/1
  • 财政年份:
    2012
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Research Grant

相似国自然基金

风格-内容-模型联合增强的单源领域泛化方法研究
  • 批准号:
    62306008
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数字化转型下人机融合领导风格对团队绩效的影响机制研究
  • 批准号:
    72372156
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
唐卡壁画内容生成与风格迁移关键技术研究
  • 批准号:
    62366047
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
从图像到矢量地图的风格迁移方法
  • 批准号:
    42371443
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
考虑驾驶员动态风格的共驾型汽车横向动力学分析与共享控制研究
  • 批准号:
    52302469
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Doctoral Dissertation Research: Place, Persona, and Linguistic Style among College Student Border Commuters
博士论文研究:大学生边境通勤者的地点、角色和语言风格
  • 批准号:
    2336567
  • 财政年份:
    2024
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Standard Grant
Music Production Style Transfer (ProStyle)
音乐制作风格迁移 (ProStyle)
  • 批准号:
    10105431
  • 财政年份:
    2024
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Collaborative R&D
Reconstruction of the life style at the hinterland waterfront of Alexandria: Targetting the temple precinct on the sandhill
亚历山大腹地海滨生活方式重建:以沙丘上的寺庙区为目标
  • 批准号:
    23H00697
  • 财政年份:
    2023
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Core B: B-HEARD Core
核心 B:B-HEARD 核心
  • 批准号:
    10555691
  • 财政年份:
    2023
  • 资助金额:
    $ 218.53万
  • 项目类别:
Project 2: Biomarker Analysis, Non-Genetic Risk Factors, and Their Genetic Interactions
项目 2:生物标志物分析、非遗传风险因素及其遗传相互作用
  • 批准号:
    10555697
  • 财政年份:
    2023
  • 资助金额:
    $ 218.53万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了