Genome Organisation for Optimising Synthetic Secondary Metabolism

用于优化合成次级代谢的基因组组织

基本信息

  • 批准号:
    BB/K006290/1
  • 负责人:
  • 金额:
    $ 43.45万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

This project will research genome organisation and in particular how changing the location and arrangement of metabolic enzyme genes within a yeast genome can alter the amount of the metabolite they produce, in this case the antibiotic penicillin. Antibiotics are just one class of complex chemicals that the diverse array of organisms on Earth has naturally evolved to produce. The production of chemicals by life is known as metabolism and the more complex high-value chemicals that specialist cells produce (e.g. in plants) are called secondary metabolites and these include most therapeutic molecules known today. Production of secondary metabolites in cells requires specific enzymes which are encoded by genes usually under strict control (regulation). As our understanding of biology improves through many fundamental research breakthroughs, scientists are now looking to re-engineer secondary metabolism to produce valuable compounds in cellular systems that are easy to work with. Microbes like brewer's yeast are perfect as they are easy to culture and so could cheaply produce high yields of valuable compounds from renewable resources like sugar.The most promising way to perform this 'metabolic engineering' is to use what is known as a synthetic biology approach, where genes and their controllers are treated as modular components with well-defined behaviours and then combined in a rational design-based manner. So far the synthetic biology approach to metabolic engineering has been successful in producing compounds useful as anti-malarials, cosmetics and biofuels by taking genes for enzymes found in plants and exotic microbes and combining these inside industrially-used microbes such as yeast. Crucial for achieving high yields of production in these microbes is fine-control over the precise levels of enzymes in each cell.One method of tuning enzyme levels that is currently unexplored by scientists is how the genes for these enzymes are physically arranged within a cell's genome. It is already known that gene location and orientation within a genome plays an important role in gene expression in all forms of life. Recently, it has also been established that in cells that naturally perform secondary metabolism, such as plant cells, the location of genes that make up a pathway is often tightly conserved, usually in occurring in gene 'clusters' in areas known as 'sub-telomeric regions'. Clearly, if nature and evolution are correct, then the location of where pathway genes are added to a genome must affect the enzyme levels and therefore the pathway output.This project seeks to test the hypothesis that modifying pathway gene location within a genome can result in improved yields of a high-value secondary metabolite, in this case penicillin. The genes encoding the penicillin pathway will be added to the genome of a lab yeast strain and cells will be selected that produce the greatest amounts of penicillin. The amount produced will then be monitored in a series of experiments where the pathway genes are systematically rearranged around five different places in the genome. This will give valuable information on how the arrangement of genes in the genome affects the pathway. Finally, the pathway genes will be placed in an engineered lab strain specifically designed to shuffle parts of its genome when under an evolutionary pressure. The strain will be grown to compete against bacteria and in doing will automatically rearrange pathway genes to produce the most penicillin. This project will therefore provide an important new synthetic biology approach to metabolic engineering, and also uncover valuable new information on the fundamental science of genomes and genome evolution.
该项目将研究基因组组织,尤其是如何改变酵母基因组中代谢酶基因的位置和排列可以改变其产生的代谢物的量,在这种情况下为抗生素青霉素。抗生素只是一类复杂化学物质,地球上各种生物自然会产生。生命的化学物质的产生称为代谢,而专业细胞产生的更复杂的高价值化学物质(例如,在植物中)称为二级代谢产物,其中包括当今已知的大多数治疗分子。细胞中二级代谢产物的产生需要特定的酶,这些酶通常由严格控制(调节)在严格控制下编码。随着我们对生物学的理解通过许多基本研究的突破得到改善,科学家现在正在寻求重新设计二级代谢,以在易于使用的细胞系统中生产有价值的化合物。像啤酒酵母这样的微生物是完美的,因为它们易于培养,因此可以从糖等可再生资源(如糖)中廉价地产生高产量的有价值的化合物。到目前为止,代谢工程的合成生物学方法通过在植物和外来微生物中发现的酶来生产抗疟疾,化妆品和生物燃料的化合物成功,并将这些化合物(如酵母菌(如酵母))结合在一起。在每个细胞中精确水平的酶水平上,在这些微生物中实现高产量的至关重要。一种调谐酶水平的方法,科学家目前尚未探索的酶水平是这些酶的基因在细胞基因组中的物理排列。众所周知,基因组中的基因位置和取向在所有形式的生命中都在基因表达中起重要作用。最近,还已经确定,在自然执行次级代谢的细胞中,例如植物细胞,构成途径的基因的位置通常是紧密保守的,通常在称为“亚tel体区域”的基因“簇”中发生。显然,如果自然和进化是正确的,那么将途径基因添加到基因组中的位置必须影响酶水平,因此途径输出。该项目试图检验以下假设:在这种情况下,在这种情况下,在基因组中修改途径基因位置可以改善基因组中的基因位置,从而提高高价值代谢物的产量。编码青霉素途径的基因将被添加到实验室酵母菌菌株的基因组中,并选择产生最大量的青霉素的细胞。然后,将在一系列实验中监测所产生的量,其中途径基因在基因组中的五个不同位置进行了系统重排。这将提供有关基因在基因组中的排列如何影响途径的宝贵信息。最后,途径基因将被放置在专门设计的工程实验室菌株中,以在进化压力下进行基因组的各个部分。该菌株将成长以与细菌竞争,并且在执行过程中将自动重新排列途径基因,从而产生最多的青霉素。因此,该项目将为代谢工程提供一种重要的新合成生物学方法,并发现有关基因组和基因组进化基础科学的有价值的新信息。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Synthetic Genome Summer Course.
合成基因组暑期课程。
Burden-driven feedback control of gene expression
  • DOI:
    10.1101/177030
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    48
  • 作者:
    Francesca Ceroni;Alice Boo;Simone Furini;T. Gorochowski;Olivier Borkowski;Y. Ladak;A. Awan;Charlie Gilbert;G. Stan;T. Ellis
  • 通讯作者:
    Francesca Ceroni;Alice Boo;Simone Furini;T. Gorochowski;Olivier Borkowski;Y. Ladak;A. Awan;Charlie Gilbert;G. Stan;T. Ellis
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Ellis其他文献

Chemical and Structural Information from the Enamel of a Troodon Tooth Leading to an Understanding of Diet and Environment
伤齿龙牙釉质的化学和结构信息有助于了解饮食和环境
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    R. Feng;J. Maley;G. Schatte;R. Hoffmeyer;K. Brink;Thomas Ellis;Donald J. Brinkman;R. Sammynaiken
  • 通讯作者:
    R. Sammynaiken
Borderline Dysplasia with Acetabular Retroversion: Key Findings in Large Hip Arthroscopy Study Group
  • DOI:
    10.1016/j.arthro.2020.12.087
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dominic S. Carreira;Benjamin Kivlan;Shane Nho;Andrew Wolff;John Salvo;John Christoforetti;Thomas Ellis;Dominic Carreira
  • 通讯作者:
    Dominic Carreira
Changes in Satisfaction and Functional Outcomes between Years One and Two After Hip Preservation Surgery
  • DOI:
    10.1016/j.arthro.2020.12.091
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dominic Carreira;Dean Matsuda;Benjamin Kivlan;Shane Nho;Andrew Wolff;John Salvo;John Christoforetti;Thomas Ellis
  • 通讯作者:
    Thomas Ellis
Synchrotron FTIR as a tool for studying populations and individual living cells of green algae
同步加速器 FTIR 作为研究绿藻种群和个体活细胞的工具
  • DOI:
    10.1101/808220
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kira L. Goff;Thomas Ellis;K. Wilson
  • 通讯作者:
    K. Wilson
Iliopsoas Pathology: Game-changing Findings from a Large Hip Arthroscopy Study Group
  • DOI:
    10.1016/j.arthro.2020.12.115
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dominic S. Carreira;Benjamin Kivlan;Shane Nho;Andrew Wolff;John Salvo;John Christoforetti;Thomas Ellis;Dominic Carreira
  • 通讯作者:
    Dominic Carreira

Thomas Ellis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Ellis', 18)}}的其他基金

Sustainable Style for Clean Growth: Innovating Textile Production through Engineering Biology
清洁增长的可持续方式:通过工程生物学创新纺织品生产
  • 批准号:
    BB/Y007735/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Research Grant
CBET-EPSRC - Grown Engineered Materials (GEMs): synthetic consortia for biomanufacturing tunable composites
CBET-EPSRC - 生长工程材料 (GEM):生物制造可调复合材料的合成联盟
  • 批准号:
    EP/S032215/1
  • 财政年份:
    2020
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Research Grant
[Australia] Construction of Synthetic Yeast Chromosomes using BioFoundries in United Kingdom and Australia
[澳大利亚] 使用英国和澳大利亚的 BioFoundries 构建合成酵母染色体
  • 批准号:
    BB/S020411/1
  • 财政年份:
    2019
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Research Grant
Towards Genomes-to-Design: Building and Testing a Minimal Essential Chromosome
迈向基因组设计:构建和测试最小必需染色体
  • 批准号:
    BB/R002614/1
  • 财政年份:
    2018
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Research Grant
Grow-Your-Own Composites: Programming Diverse Material Properties for Defence into Engineered Bacterial Cellulose
自行种植复合材料:将用于防御的多种材料特性编程到工程细菌纤维素中
  • 批准号:
    EP/N026489/1
  • 财政年份:
    2016
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Research Grant
14TSB_SynBio A High Throughput Miniaturised Mass Spectrometry Tool for Profiling Synthetic Design Libraries
14TSB_SynBio 用于分析合成设计文库的高通量小型化质谱工具
  • 批准号:
    BB/M005577/1
  • 财政年份:
    2014
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Research Grant
Engineering Fellowships for Growth: Advanced synthetic biology measurement to enable programmable functional biomaterials
增长工程奖学金:先进的合成生物学测量,以实现可编程功能生物材料
  • 批准号:
    EP/M002306/1
  • 财政年份:
    2014
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Fellowship
The Sc2.0 UK Genome Engineering Resource (SUGER)
Sc2.0 英国基因组工程资源 (SUGER)
  • 批准号:
    BB/K019791/1
  • 财政年份:
    2013
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Research Grant
Engineered burden-based feedback for robust and optimised synthetic biology
工程化的基于负荷的反馈,用于稳健和优化的合成生物学
  • 批准号:
    EP/J021849/1
  • 财政年份:
    2013
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Research Grant
Engineered security systems for environmental synthetic biology
环境合成生物学工程安全系统
  • 批准号:
    BB/J019720/1
  • 财政年份:
    2012
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Research Grant

相似国自然基金

互联互通条件下面向灵活运营组织的轨道交通网络列车运营计划一体化优化研究
  • 批准号:
    72371015
  • 批准年份:
    2023
  • 资助金额:
    39 万元
  • 项目类别:
    面上项目
面向跨部门合作机制优化设计的超大城市复杂应急管理组织体系的运行与演化机理及其仿真分析研究
  • 批准号:
    72374086
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
基于卫星码头的港口集疏运系统异质集卡车流协同组织优化
  • 批准号:
    52302415
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
隐私保护下金属轧制过程自组织分层模糊建模与优化控制研究
  • 批准号:
    62373196
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
成分优化设计调控激光增材IN738LC开裂行为与组织性能研究
  • 批准号:
    52371032
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

De Montfort University Higher Education Corporation and FABRIC Charitable Incorporated Organisation KTP 23_24 R1
德蒙福特大学高等教育公司和 FABRIC 慈善法人组织 KTP 23_24 R1
  • 批准号:
    10071520
  • 财政年份:
    2024
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Knowledge Transfer Partnership
Investigating the molecular basis of basement membrane specialisation and basal surface organisation during epithelial tissue development
研究上皮组织发育过程中基底膜特化和基底表面组织的分子基础
  • 批准号:
    MR/Y012089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Research Grant
Beyond broadcasting: Community radio as a model community organisation
超越广播:社区广播作为模范社区组织
  • 批准号:
    DE240100416
  • 财政年份:
    2024
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Discovery Early Career Researcher Award
Robust scaling and self-organisation of the Drosophila anteroposterior axis
果蝇前后轴的稳健缩放和自组织
  • 批准号:
    BB/Y00020X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Research Grant
Investigating the mechanosensitive interplays between genetic control and self-organisation during the emergence of cardiac tissue curvature
研究心脏组织曲率出现过程中遗传控制和自组织之间的机械敏感性相互作用
  • 批准号:
    BB/Y00566X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.45万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了