Towards Genomes-to-Design: Building and Testing a Minimal Essential Chromosome
迈向基因组设计:构建和测试最小必需染色体
基本信息
- 批准号:BB/R002614/1
- 负责人:
- 金额:$ 50.23万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Synthetic biology follows engineering principles to build novel devices, pathways and circuits encoded by modular DNA parts, and more recently has turned to the engineering of entire genomes in living cells. The aim of much of the work of synthetic biology is to design and build cells to perform useful new functions they typically don't perform in nature. To further this field, it is important to engineer the workhorse living cell so that they perform their new tasks reliably and reproducibly. To this end there is significant interest in developing simplified cells built with minimal genomes. Through genome engineering and synthesis, it should be possible to create genomes that do not encode the many genes driving processes unnecessary for the cell to perform its main desired function. The work proposed here aims to accelerate the engineering and synthesis of such minimal genomes, by being the first project to build a working chromosome from just the elements deemed essential to support the cell for its function in the lab. Cells growing with this minimal genome should theoretically be more efficient at performing engineered tasks, such as the biosynthesis of a drug molecule at high yields. Our work will therefore be able to produce specialist strains valuable for use in biotechnology.To achieve this, we plan to use knowledge and tools gained from our work as part of the international Sc2.0 project, which is constructing an entirely synthetic genome for baker's yeast (Saccharomyces cerevisiae). We have just completed construction of one chromosome for this project, which now encodes all 334 genes normally found on its natural counterpart. In this project, we aim to replace this entire chromosome with a much smaller minimal version built-up from modules of DNA that each encode one of the genes from this chromosome deemed essential for cell growth in the lab. To do this we will use system called SCRaMbLE that is hard-coded into the DNA of our recently completed synthetic chromosome. Switching this system on leads to genes unnecessary for growth being automatically lost from the growing cells. Doing this at a large scale with our engineered yeast cells and then genome-sequencing whole populations, should provide us with a rich set of data that tells us which genes are required for growth of the yeast in the lab. With this important new dataset in hand, we will then proceed to building our minimal synthetic chromosome and assessing its ability to replace a full chromosome in growing yeast cells. We plan to measure how cells with the minimal chromosome perform in a variety of conditions and determine whether they can grow and express genes with greater efficiency than normal yeast, now that redundant DNA has been removed. This will generate important new insights for understanding how cells consume resources efficiently and have evolved to encode many non-essential genes on their genomes. It will also give us an opportunity to produce new specialist cells for use in biotechnology, and we plan to test our minimal chromosome yeast for their ability to produce a variety of drug molecules that are valuable for industry and particularly for UK industrial collaborators.
合成生物学遵循工程原理,以建立由模块化DNA零件编码的新型设备,途径和电路,最近又转向了活细胞中整个基因组的工程。合成生物学的许多工作的目的是设计和构建细胞以执行通常在自然界中不执行的有用的新功能。为了进一步进一步,重要的是要设计主力的活细胞,以便他们可靠和可重复地执行新任务。为此,人们对开发以最小基因组构建的简化细胞有很大的兴趣。通过基因组工程和合成,应该有可能创建不需要细胞执行其主要所需功能的许多基因驱动过程的基因组。这里提出的工作旨在加快此类最小基因组的工程和综合,这是第一个从仅仅是从仅被认为为其在实验室功能支持该单元的元素中构建工作染色体的项目。从理论上讲,用这种最小基因组生长的细胞在执行工程任务方面应该更有效,例如高产率的药物分子的生物合成。因此,我们的工作将能够生产出有价值用于生物技术的专业菌株。为了实现这一目标,我们计划使用从工作中获得的知识和工具作为国际SC2.0项目的一部分,该项目正在为贝克的酵母(酿酒酵母)建造一个完全合成的基因组。我们刚刚完成了该项目的一个染色体的结构,该项目现在编码通常在其自然对应物上发现的所有334个基因。在这个项目中,我们旨在用由DNA模块构建的最小版本替换整个染色体,每个版本都从该染色体中编码一个基因,认为这对于实验室的细胞生长至关重要。为此,我们将使用称为CRAMBLE的系统,该系统将其硬编码为我们最近完成的合成染色体的DNA。将此系统切换为导致基因自动从生长细胞中自动损失的基因。通过我们的工程酵母细胞进行大规模做到这一点,然后再进行基因组测序的整个种群,为我们提供丰富的数据,这些数据告诉我们实验室中酵母生长需要哪些基因。借助此重要的新数据集,我们将继续构建最小的合成染色体,并评估其在生长酵母细胞中替代完整染色体的能力。我们计划测量具有最小染色体的细胞在各种条件下的性能,并确定它们是否可以比正常酵母更高的效率生长和表达基因,现在已经去除了冗余DNA。这将产生重要的新见解,以了解细胞如何有效地消耗资源并演变为在其基因组上编码许多非必需基因。它还将使我们有机会生产新的专家细胞以用于生物技术,我们计划测试我们最少的染色体酵母,以便它们能够生产各种对工业,尤其是英国工业合作者有价值的药物分子的能力。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Screening microbially produced ?9-tetrahydrocannabinol using a yeast biosensor workflow.
使用酵母生物传感器工作流程筛选微生物产生的 9-四氢大麻酚。
- DOI:10.17863/cam.89822
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Shaw W
- 通讯作者:Shaw W
Synthetic designs regulating cellular transitions: Fine-tuning of switches and oscillators
- DOI:10.1016/j.coisb.2020.12.002
- 发表时间:2021-03-01
- 期刊:
- 影响因子:3.7
- 作者:Zorzan,Irene;Lopez,Alejandra Rojas;Barberis,Matteo
- 通讯作者:Barberis,Matteo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Ellis其他文献
Chemical and Structural Information from the Enamel of a Troodon Tooth Leading to an Understanding of Diet and Environment
伤齿龙牙釉质的化学和结构信息有助于了解饮食和环境
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:3.5
- 作者:
R. Feng;J. Maley;G. Schatte;R. Hoffmeyer;K. Brink;Thomas Ellis;Donald J. Brinkman;R. Sammynaiken - 通讯作者:
R. Sammynaiken
Borderline Dysplasia with Acetabular Retroversion: Key Findings in Large Hip Arthroscopy Study Group
- DOI:
10.1016/j.arthro.2020.12.087 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:
- 作者:
Dominic S. Carreira;Benjamin Kivlan;Shane Nho;Andrew Wolff;John Salvo;John Christoforetti;Thomas Ellis;Dominic Carreira - 通讯作者:
Dominic Carreira
Changes in Satisfaction and Functional Outcomes between Years One and Two After Hip Preservation Surgery
- DOI:
10.1016/j.arthro.2020.12.091 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:
- 作者:
Dominic Carreira;Dean Matsuda;Benjamin Kivlan;Shane Nho;Andrew Wolff;John Salvo;John Christoforetti;Thomas Ellis - 通讯作者:
Thomas Ellis
Synchrotron FTIR as a tool for studying populations and individual living cells of green algae
同步加速器 FTIR 作为研究绿藻种群和个体活细胞的工具
- DOI:
10.1101/808220 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Kira L. Goff;Thomas Ellis;K. Wilson - 通讯作者:
K. Wilson
Iliopsoas Pathology: Game-changing Findings from a Large Hip Arthroscopy Study Group
- DOI:
10.1016/j.arthro.2020.12.115 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:
- 作者:
Dominic S. Carreira;Benjamin Kivlan;Shane Nho;Andrew Wolff;John Salvo;John Christoforetti;Thomas Ellis;Dominic Carreira - 通讯作者:
Dominic Carreira
Thomas Ellis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Ellis', 18)}}的其他基金
Sustainable Style for Clean Growth: Innovating Textile Production through Engineering Biology
清洁增长的可持续方式:通过工程生物学创新纺织品生产
- 批准号:
BB/Y007735/1 - 财政年份:2024
- 资助金额:
$ 50.23万 - 项目类别:
Research Grant
CBET-EPSRC - Grown Engineered Materials (GEMs): synthetic consortia for biomanufacturing tunable composites
CBET-EPSRC - 生长工程材料 (GEM):生物制造可调复合材料的合成联盟
- 批准号:
EP/S032215/1 - 财政年份:2020
- 资助金额:
$ 50.23万 - 项目类别:
Research Grant
[Australia] Construction of Synthetic Yeast Chromosomes using BioFoundries in United Kingdom and Australia
[澳大利亚] 使用英国和澳大利亚的 BioFoundries 构建合成酵母染色体
- 批准号:
BB/S020411/1 - 财政年份:2019
- 资助金额:
$ 50.23万 - 项目类别:
Research Grant
Grow-Your-Own Composites: Programming Diverse Material Properties for Defence into Engineered Bacterial Cellulose
自行种植复合材料:将用于防御的多种材料特性编程到工程细菌纤维素中
- 批准号:
EP/N026489/1 - 财政年份:2016
- 资助金额:
$ 50.23万 - 项目类别:
Research Grant
14TSB_SynBio A High Throughput Miniaturised Mass Spectrometry Tool for Profiling Synthetic Design Libraries
14TSB_SynBio 用于分析合成设计文库的高通量小型化质谱工具
- 批准号:
BB/M005577/1 - 财政年份:2014
- 资助金额:
$ 50.23万 - 项目类别:
Research Grant
Engineering Fellowships for Growth: Advanced synthetic biology measurement to enable programmable functional biomaterials
增长工程奖学金:先进的合成生物学测量,以实现可编程功能生物材料
- 批准号:
EP/M002306/1 - 财政年份:2014
- 资助金额:
$ 50.23万 - 项目类别:
Fellowship
Genome Organisation for Optimising Synthetic Secondary Metabolism
用于优化合成次级代谢的基因组组织
- 批准号:
BB/K006290/1 - 财政年份:2013
- 资助金额:
$ 50.23万 - 项目类别:
Research Grant
The Sc2.0 UK Genome Engineering Resource (SUGER)
Sc2.0 英国基因组工程资源 (SUGER)
- 批准号:
BB/K019791/1 - 财政年份:2013
- 资助金额:
$ 50.23万 - 项目类别:
Research Grant
Engineered burden-based feedback for robust and optimised synthetic biology
工程化的基于负荷的反馈,用于稳健和优化的合成生物学
- 批准号:
EP/J021849/1 - 财政年份:2013
- 资助金额:
$ 50.23万 - 项目类别:
Research Grant
Engineered security systems for environmental synthetic biology
环境合成生物学工程安全系统
- 批准号:
BB/J019720/1 - 财政年份:2012
- 资助金额:
$ 50.23万 - 项目类别:
Research Grant
相似国自然基金
人工智能驱动的肠道宏基因组环肽药物发现和设计方法研究
- 批准号:82304351
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大豆骨干亲本中豆32优异基因组区段解析及分子设计育种研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于导入系精准遗传信息的安徽江淮水稻“理想目标基因组型”设计育种理论及方法研究
- 批准号:U21A20214
- 批准年份:2021
- 资助金额:260 万元
- 项目类别:
基于材料基因组的沥青混合料数字化设计方法研究
- 批准号:
- 批准年份:2021
- 资助金额:万元
- 项目类别:国际(地区)合作与交流项目
大豆骨干亲本中豆32优异基因组区段解析及分子设计育种研究
- 批准号:32172099
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
相似海外基金
Deep Sequencing of Relapse and Refractory Hodgkin Lymphoma Genomes: A Study of Tumor Biology and Evolution
复发和难治性霍奇金淋巴瘤基因组的深度测序:肿瘤生物学和进化的研究
- 批准号:
10351582 - 财政年份:2023
- 资助金额:
$ 50.23万 - 项目类别:
Development of GenomeBuild as a Universal Method to Synthesize Genomes
GenomeBuild 的开发作为合成基因组的通用方法
- 批准号:
10565058 - 财政年份:2023
- 资助金额:
$ 50.23万 - 项目类别:
Development of high-quality reference genomes for Anopheles squamosus and An. cydippis
开发鳞状按蚊和按蚊的高质量参考基因组。
- 批准号:
10725180 - 财政年份:2023
- 资助金额:
$ 50.23万 - 项目类别:
Functional role of RNA structure and m6A modification in viral genomes
RNA结构和m6A修饰在病毒基因组中的功能作用
- 批准号:
10458770 - 财政年份:2021
- 资助金额:
$ 50.23万 - 项目类别:
Functional role of RNA structure and m6A modification in viral genomes
RNA结构和m6A修饰在病毒基因组中的功能作用
- 批准号:
10301540 - 财政年份:2021
- 资助金额:
$ 50.23万 - 项目类别: