Analysis of fundamental properties of elastic equations
弹性方程基本性质分析
基本信息
- 批准号:15540152
- 负责人:
- 金额:$ 1.86万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research project we aimed initially to know properties of solutions of the elastic equations and to clarify roots of those properties. And, using the clarification, we intended to study individual topics concerned with elastic waves.We have seen that the elastic wave equations are near the scalar-valued wave equation although they are one of kinds of hyperbolic systems, and that this is because of positivity and symmetry of the elastic operators. As one of main results concerning this, we have proved that the elastic operators can be expressed of product form of first order operators in the same way as the scalar-valued elliptic operators. This expression cannot be expected for systems of the general form.It is known that there exists the Rayleigh wave in the elastic equations, which does not occur in the scalar-valued equations. We have shown synthetically how this existence affects scattering theories and have constructed a general scattering theory of the Lax-Phillips type accounting the Rayleigh wave.Furthermore, we have studied individual topics in this theory, and have obtained a representation of the scattering kernel. This representation is a fundamental and useful formula to solve inverse scattering problems.A special result on the energy decay has been got also for the scalar-valued equation. Namely it is proved that the total energy does not decay necessarily if the dissipative term is added of non isotropy. This gives an interesting suggestion on behavior of the elastic waves.
在该研究项目中,我们最初旨在了解弹性方程解决方案的属性,并阐明这些属性的根源。而且,使用澄清,我们打算研究与弹性波有关的个体主题。我们已经看到,弹性波方程是接近标量值的波动方程,尽管它们是多种双曲线系统之一,这是由于弹性和弹性运算符的阳性和对称性。作为有关此的主要结果之一,我们证明了弹性运营商可以以与标量值椭圆运算符相同的方式以一阶操作员的产品形式表达。对于一般形式的系统,无法期望这种表达。众所周知,弹性方程中存在瑞利波,而标量值不存在。我们已经表明,这种存在如何影响散射理论,并构建了一种宽度菲利普斯类型的一般散射理论,该理论占瑞利波的占主导地位。Furthermore,我们已经研究了该理论中的个体主题,并获得了散射核心的表示。这种表示是解决反向散射问题的基本和有用的公式。对于标量值的方程,能量衰减的特殊结果也得到了特殊的结果。也就是说,如果添加非各向同性的耗散项,总能量不一定是衰减的。这给出了关于弹性波的行为的有趣建议。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non decay of the total energy for the wave equation with the dissipative term of spatial anisotropy
具有空间各向异性耗散项的波动方程总能量不衰减
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:川下美潮;川下和日子;曽我日出夫
- 通讯作者:曽我日出夫
川下美潮, 中澤秀夫, 曽我日出夫: "Non decay of the total energy for the wave equation with the dissipative term of spatial anisotropy"Nagoya Math.J.. ( 掲載予定レフェリー済).
Yoshio Kawashita、Hideo Nakazawa、Hideo Soga:“具有空间各向异性耗散项的波动方程总能量的非衰变”Nagoya Math.J.(参考待出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SOGA Hideo其他文献
SOGA Hideo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SOGA Hideo', 18)}}的其他基金
Development of representation of elastic waves and investigation of their fundamental properties
弹性波表示的发展及其基本特性的研究
- 批准号:
21540161 - 财政年份:2009
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Analysis for Inverse Scattering Problems of Elastic Waves
弹性波逆散射问题的数学分析
- 批准号:
19540160 - 财政年份:2007
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical models of elastic waves and their inverse problems
弹性波数学模型及其反问题
- 批准号:
17540145 - 财政年份:2005
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of scattering waves by perturbed portions
扰动部分的散射波分析
- 批准号:
13640150 - 财政年份:2001
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of special waves in elastic bodies
弹性体中的特殊波分析
- 批准号:
10640151 - 财政年份:1998
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Inverse problems of the scattering by obstacles
障碍物散射反问题
- 批准号:
61540077 - 财政年份:1986
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似国自然基金
具Hardy与库伦位势的色散方程的动力学行为研究
- 批准号:11901041
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
几类非线性色散波方程的适定性和散射理论
- 批准号:11101042
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
两层介质中反散射问题的唯一性理论与数值算法研究
- 批准号:11101412
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
偏微分方程的调和分析方法
- 批准号:11171033
- 批准年份:2011
- 资助金额:46.0 万元
- 项目类别:面上项目
非线性波方程的散射性理论
- 批准号:10426006
- 批准年份:2004
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
New developments in scattering theory for nonlinear dispersive equations
非线性色散方程散射理论的新进展
- 批准号:
19K14580 - 财政年份:2019
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Asymptotic analysis for wave propagation with refracted phenomena and the application to scattering theory
折射现象波传播的渐近分析及其在散射理论中的应用
- 批准号:
16K05241 - 财政年份:2016
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation of the weak-form theory framework for the recursive transfer method: Application to the microwave scattering and examination for tensor fields.
递归传递方法的弱形式理论框架的研究:在微波散射和张量场检查中的应用。
- 批准号:
23560065 - 财政年份:2011
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the asymptotic form of the solutions to the Helmholtz equation and the application to mathematical scattering theory
亥姆霍兹方程解的渐近形式及其在数学散射理论中的应用研究
- 批准号:
22540198 - 财政年份:2010
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spectral and inverse scattering theory on non-compact manifolds
非紧流形上的谱和逆散射理论
- 批准号:
21340028 - 财政年份:2009
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)