Analysis of special waves in elastic bodies
弹性体中的特殊波分析
基本信息
- 批准号:10640151
- 负责人:
- 金额:$ 1.86万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project is concerned with elastic waves, and the main purposes set initially werea) to obtain concrete representations of the solutions,b) to study scattering of the waves near boundaries,c) to study inverse problems concerning the waves near boundaries,d) to analyze the waves in the case of the total reflection.We have accomplished these almost as was expected. Let us summarize the results obtained in this project.About a) and d) , we have got an asymptotic expansion of the wave reflected totally, which is one of the mainest results. This expansion is much expected to be useful in analyzing the phenomenon of the scattering and the inverse problems of the elastic waves. Furthermore, we have obtained also another kind of concrete representation of the waves.About b) , we have shown that the Rayleigh wave, which has been much interested since a long time ago, behaves individually and can be extracted in the Lax-Phillips scattering theory : We have made a formulation of that theory for the Rayleigh wave, which is useful for the inverse problems. Moreover, we have investigated precisely decay of this wave expressing the behavior at infinity.About c) , we have got a new methods of reconstruction of coefficients in differential equations applicable to the inverse problems. And we have obtained a new numerical method of finite elements for the approximate solutions. These seem to be very useful to solve the inverse problems, but we cannot finish solving concretely some of the inverse problems.
该研究项目涉及弹性波,最初设定的主要目的是:获得解决方案的具体表示,b)研究边界附近波的散射,c)研究边界附近波的反演问题,d)分析全反射情况下的波。我们几乎按照预期完成了这些工作。让我们总结一下这个项目中获得的结果。关于a)和d),我们得到了全反射波的渐近展开,这是最重要的结果之一。人们普遍认为这种展开对于分析散射现象和弹性波的反演问题很有用。此外,我们还获得了波的另一种具体表示。关于 b),我们已经证明了长期以来人们一直很感兴趣的瑞利波,它具有单独的行为,并且可以在 Lax-Phillips 散射中提取理论:我们已经为瑞利波制定了该理论的公式,这对于反演问题很有用。此外,我们还精确地研究了表达无穷远处行为的波的衰减。关于c),我们得到了一种适用于反问题的微分方程系数重构的新方法。并得到了一种新的有限元数值方法的近似解。这些看起来对于解决逆问题很有用,但是有些逆问题我们还不能具体解决。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SOGA Hideo其他文献
SOGA Hideo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SOGA Hideo', 18)}}的其他基金
Development of representation of elastic waves and investigation of their fundamental properties
弹性波表示的发展及其基本特性的研究
- 批准号:
21540161 - 财政年份:2009
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Analysis for Inverse Scattering Problems of Elastic Waves
弹性波逆散射问题的数学分析
- 批准号:
19540160 - 财政年份:2007
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical models of elastic waves and their inverse problems
弹性波数学模型及其反问题
- 批准号:
17540145 - 财政年份:2005
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of fundamental properties of elastic equations
弹性方程基本性质分析
- 批准号:
15540152 - 财政年份:2003
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of scattering waves by perturbed portions
扰动部分的散射波分析
- 批准号:
13640150 - 财政年份:2001
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Inverse problems of the scattering by obstacles
障碍物散射反问题
- 批准号:
61540077 - 财政年份:1986
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似国自然基金
一类双色散非局部波动方程初值问题的理论研究
- 批准号:12301272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
随机阻尼波动方程的高效保结构算法研究
- 批准号:12301518
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多尺度神经算子学习高效求解分数阶波动方程
- 批准号:42304121
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
拟线性波动方程的若干研究
- 批准号:12371217
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
具有非完美匹配界面波动方程的间断Galerkin格式
- 批准号:12361088
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
相似海外基金
Mathematical models of elastic waves and their inverse problems
弹性波数学模型及其反问题
- 批准号:
17540145 - 财政年份:2005
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Scattering theory of nonlinear wave equations with bound states
具有束缚态的非线性波动方程的散射理论
- 批准号:
216981-2001 - 财政年份:2003
- 资助金额:
$ 1.86万 - 项目类别:
Discovery Grants Program - Individual
Analysis of fundamental properties of elastic equations
弹性方程基本性质分析
- 批准号:
15540152 - 财政年份:2003
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on the behavior of solutions in the zero dispersion limit of the nonlinear wave equations with the integral kernel
带积分核的非线性波动方程零色散极限解的行为研究
- 批准号:
14540209 - 财政年份:2002
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Scattering theory of nonlinear wave equations with bound states
具有束缚态的非线性波动方程的散射理论
- 批准号:
216981-2001 - 财政年份:2002
- 资助金额:
$ 1.86万 - 项目类别:
Discovery Grants Program - Individual