Analysis of special waves in elastic bodies
弹性体中的特殊波分析
基本信息
- 批准号:10640151
- 负责人:
- 金额:$ 1.86万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project is concerned with elastic waves, and the main purposes set initially werea) to obtain concrete representations of the solutions,b) to study scattering of the waves near boundaries,c) to study inverse problems concerning the waves near boundaries,d) to analyze the waves in the case of the total reflection.We have accomplished these almost as was expected. Let us summarize the results obtained in this project.About a) and d) , we have got an asymptotic expansion of the wave reflected totally, which is one of the mainest results. This expansion is much expected to be useful in analyzing the phenomenon of the scattering and the inverse problems of the elastic waves. Furthermore, we have obtained also another kind of concrete representation of the waves.About b) , we have shown that the Rayleigh wave, which has been much interested since a long time ago, behaves individually and can be extracted in the Lax-Phillips scattering theory : We have made a formulation of that theory for the Rayleigh wave, which is useful for the inverse problems. Moreover, we have investigated precisely decay of this wave expressing the behavior at infinity.About c) , we have got a new methods of reconstruction of coefficients in differential equations applicable to the inverse problems. And we have obtained a new numerical method of finite elements for the approximate solutions. These seem to be very useful to solve the inverse problems, but we cannot finish solving concretely some of the inverse problems.
该研究项目与弹性波有关,主要目的最初是为了获得解决方案的混凝土表示,b)在边界附近研究波浪的散射,c)研究有关边界接近边界的逆问题,d)分析了总反应的波浪。让我们总结该项目中获得的结果。人们非常有望在分析弹性和弹性波的反问题的现象中有用。此外,我们还获得了波浪的另一种混凝土表示。b),我们已经表明,从很久以来以来,雷利波(Rayleigh Wave)就很早就表现出来,并且可以在lax-phillips散射理论中提取:我们已经为雷尔波(Rayleigh Wave)提出了对雷尔(Rayleigh Wave)的表述,这对雷利(Rayle)有用,这对逆向问题有用。此外,我们已经研究了表达无限行为的这一波的衰减。我们为近似解决方案获得了有限元的新数值方法。这些对于解决反问题似乎非常有用,但是我们不能具体解决某些反问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SOGA Hideo其他文献
SOGA Hideo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SOGA Hideo', 18)}}的其他基金
Development of representation of elastic waves and investigation of their fundamental properties
弹性波表示的发展及其基本特性的研究
- 批准号:
21540161 - 财政年份:2009
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Analysis for Inverse Scattering Problems of Elastic Waves
弹性波逆散射问题的数学分析
- 批准号:
19540160 - 财政年份:2007
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical models of elastic waves and their inverse problems
弹性波数学模型及其反问题
- 批准号:
17540145 - 财政年份:2005
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of fundamental properties of elastic equations
弹性方程基本性质分析
- 批准号:
15540152 - 财政年份:2003
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of scattering waves by perturbed portions
扰动部分的散射波分析
- 批准号:
13640150 - 财政年份:2001
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Inverse problems of the scattering by obstacles
障碍物散射反问题
- 批准号:
61540077 - 财政年份:1986
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似国自然基金
具Hardy与库伦位势的色散方程的动力学行为研究
- 批准号:11901041
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
几类非线性色散波方程的适定性和散射理论
- 批准号:11101042
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
两层介质中反散射问题的唯一性理论与数值算法研究
- 批准号:11101412
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
偏微分方程的调和分析方法
- 批准号:11171033
- 批准年份:2011
- 资助金额:46.0 万元
- 项目类别:面上项目
非线性波方程的散射性理论
- 批准号:10426006
- 批准年份:2004
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
New developments in scattering theory for nonlinear dispersive equations
非线性色散方程散射理论的新进展
- 批准号:
19K14580 - 财政年份:2019
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Asymptotic analysis for wave propagation with refracted phenomena and the application to scattering theory
折射现象波传播的渐近分析及其在散射理论中的应用
- 批准号:
16K05241 - 财政年份:2016
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation of the weak-form theory framework for the recursive transfer method: Application to the microwave scattering and examination for tensor fields.
递归传递方法的弱形式理论框架的研究:在微波散射和张量场检查中的应用。
- 批准号:
23560065 - 财政年份:2011
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the asymptotic form of the solutions to the Helmholtz equation and the application to mathematical scattering theory
亥姆霍兹方程解的渐近形式及其在数学散射理论中的应用研究
- 批准号:
22540198 - 财政年份:2010
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spectral and inverse scattering theory on non-compact manifolds
非紧流形上的谱和逆散射理论
- 批准号:
21340028 - 财政年份:2009
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)