Mathematical models of elastic waves and their inverse problems

弹性波数学模型及其反问题

基本信息

  • 批准号:
    17540145
  • 负责人:
  • 金额:
    $ 1.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2006
  • 项目状态:
    已结题

项目摘要

In this research project we aimed initially(i) to examine scattering of surface waves (e.g. the Rayleigh wave, etc) and investigate inverse problems to extract the situations of the surface from the data of those waves ;(ii) to set up some mathematical model corresponding the seismic probe and study inverse problems to know the shape of stratums from the data of reflected waves for artificial incident waves ;(iii) to solve the above inverse problems numerically under typical conditions and make softwares of personal computers for exhibition of the propagation of the waves in the display.About (i) : We have constructed a scattering theory of the Rayleigh wave and its asymptotic solution useful for solving the inverse problem, and a representation of the scattering kernel expressing the situations of the boundary. Furthermore, using these results, we have solved the inverse problem to get the information of the boundary from the date of the Rayleigh wave.About (ii) : We have made an appropriate mathematical setup of the inverse problem of seismic waves and have developed the methods applied to it under some assumptions. But we have not been able to accomplish completely what we intended initially.About (iii) : We have obtained a numerical algorism of optimal shape problems which seems applicable to the inverse problem. We have made a software of personal computers for exhibition of the propagation of the waves in the display. This will be developed to the one to show the situations of various setting of the inverse problem.
In this research project we aimed initially(i) to examine scattering of surface waves (e.g. the Rayleigh wave, etc) and investigate inverse problems to extract the situations of the surface from the data of those waves ;(ii) to set up some mathematical model corresponding the seismic probe and study inverse problems to know the shape of stratums from the data of reflected waves for artificial incident waves ;(iii) to solve the above inverse problems numerically under典型的条件并制造个人计算机的软件,以展示显示屏中波的传播。此外,使用这些结果,我们已经解决了逆问题,从瑞利波(Rayleigh Wave)之日起获取边界的信息。但是,我们无法完全完成我们最初的意图。(iii):我们获得了似乎适用于反问题的最佳形状问题的数值算法。我们制作了一个个人计算机软件,以展示显示器中波浪的传播。这将开发给一个以显示逆问题各种环境的情况。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scattering theory for the elastic wave equations in perturbed half-spaces
扰动半空间中弹性波方程的散射理论
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SOGA Hideo其他文献

SOGA Hideo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SOGA Hideo', 18)}}的其他基金

Development of representation of elastic waves and investigation of their fundamental properties
弹性波表示的发展及其基本特性的研究
  • 批准号:
    21540161
  • 财政年份:
    2009
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Analysis for Inverse Scattering Problems of Elastic Waves
弹性波逆散射问题的数学分析
  • 批准号:
    19540160
  • 财政年份:
    2007
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of fundamental properties of elastic equations
弹性方程基本性质分析
  • 批准号:
    15540152
  • 财政年份:
    2003
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of scattering waves by perturbed portions
扰动部分的散射波分析
  • 批准号:
    13640150
  • 财政年份:
    2001
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of special waves in elastic bodies
弹性体中的特殊波分析
  • 批准号:
    10640151
  • 财政年份:
    1998
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Inverse problems of the scattering by obstacles
障碍物散射反问题
  • 批准号:
    61540077
  • 财政年份:
    1986
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似国自然基金

物理引导的机器学习求解频率域声波正反问题研究
  • 批准号:
    42374141
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
​基于自监督学习的医学图像质量迁移反问题理论
  • 批准号:
    12301546
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
反问题变分正则化方法的优化和离散误差估计
  • 批准号:
    12371424
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
关于时间分数阶扩散-波动方程的多参数反问题研究
  • 批准号:
    12301534
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模非线性反问题的随机梯度型迭代法及其应用研究
  • 批准号:
    12301535
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
  • 批准号:
    EP/Y030249/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Research Grant
Travel: US Participation at the 11th International Conference on Inverse Problems in Engineering
出差:美国参加第11届工程反问题国际会议
  • 批准号:
    2347919
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Standard Grant
Understanding, Predicting and Controlling AI Hallucination in Diffusion Models for Image Inverse Problems
理解、预测和控制图像逆问题扩散模型中的 AI 幻觉
  • 批准号:
    2906295
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Studentship
Development of effective and accurate non-conventional solution methods for shape inverse problems: theory and numerics
开发有效且准确的形状反问题非常规求解方法:理论和数值
  • 批准号:
    23K13012
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Conference: CBMS Conference: Inverse Problems and Nonlinearity
会议:CBMS 会议:反问题和非线性
  • 批准号:
    2329399
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了