Analysis of scattering waves by perturbed portions
扰动部分的散射波分析
基本信息
- 批准号:13640150
- 负责人:
- 金额:$ 1.73万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project is concerned with elastic waves in media with perturbed portions, and the main purposes set initially were as follow :(a) to classify various scattering theories together with extracting characteristic points for those groups of them, and to formulate new theories for the situations examined not sufficiently.(b) to investigate concrete scattering problems by means of the results in (a), especially, focusing our attention to inverse scattering problems in the engineering to get information of the media from data of the scattering waves.We have accomplished these almost as was expected. Let us summarize the results obtained in this project.About (a) : Scattering theories for the wave equations are classified into two types, that is, the Lax-Phillips type and the Wilcox one, which were treated as concluded theories. One of the main results is that we have clarified the connection between these types extracting their characteristics. Namely it has been proven that the … More y are exchangeable by a certain procedure. And also, using this result, we have constructed a scattering theory of the Lax-Phillips type which suites examination of the elastic surface waves and seems to become a basis for the scattering inverse problems of those waves. As another main result, we have shown on a general mathematical framework that there must appear special kinds of waves in the case of the total reflection, and furthermore have obtained asymptotic forms of those waves.About (b) : We have got an asymptotic expansion of the wave reflected by a hole in the elastic media. This is so concrete (not in the engineering sense) that they can apply it to inverse problems, for an example, to know from data of the reflected wave whether or not the hole is filled with a liquid. We have extended the expansion to the case that discontinuous waves are reflected totally For this proof the result in (a) is used. And also we have examined decay of the Rayleigh wave (one of the surface weves) precisely which means that this wave concentrated on the surface in the energy sense. Less
本研究项目涉及具有初始扰动部分的介质中的弹性波,其主要目的如下:(a)对各种散射理论进行分类,并提取它们的特征点,并为这些理论制定新的理论。 (b)利用(a)的结果来研究具体的散射问题,特别关注工程中的逆散射问题,从散射波的数据中获取介质的信息。我们有这些几乎达到了预期。让我们总结一下这个项目中获得的结果。关于(a):波动方程的散射理论分为两种类型,即Lax-Phillips型和Wilcox型,它们被视为结论性理论之一。主要结果是我们已经阐明了这些类型之间的联系,提取了它们的特征,即证明了y可以通过一定的过程进行交换,并且利用这个结果,我们构建了一个散射理论。 Lax-Phillips 类型适合于弹性表面波的研究,并且似乎成为这些波的散射反演问题的基础作为另一个主要结果,我们已经在一般数学框架上表明,在弹性表面波中必定会出现特殊类型的波。关于(b):我们得到了由弹性介质中的孔反射的波的渐近展开,这是非常具体的(不是工程意义上的)。他们可以申请它可以用于反演问题,例如,从反射波的数据得知孔中是否充满液体。我们将扩展扩展到不连续波被完全反射的情况。为了证明这一点,结果为(a。 )也被使用,我们还精确地检查了瑞利波(表面编织之一)的衰减,这意味着该波在能量意义上集中在表面上。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H. Soga: "Construction of asymptotic solutions of the elastic equations and their application"Theoretical and Appl. Mech. Japan 51. 309-314 (2002)
H. Soga:“弹性方程渐近解的构造及其应用”理论与应用。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
川下美潮, 川下和日子, 曽我日出夫: "Relation between scattering theories of the Wilcox and-Phillips types and a concrete construction of the translation representation"Communication in Partial Diff. Equns.. (発行予定).
Mishio Kawashita、Wakako Kawashita、Hideo Soga:“Wilcox 和 Phillips 类型的散射理论与翻译表示的具体构造之间的关系”偏微分方程中的通信..(待出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SOGA Hideo其他文献
SOGA Hideo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SOGA Hideo', 18)}}的其他基金
Development of representation of elastic waves and investigation of their fundamental properties
弹性波表示的发展及其基本特性的研究
- 批准号:
21540161 - 财政年份:2009
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Analysis for Inverse Scattering Problems of Elastic Waves
弹性波逆散射问题的数学分析
- 批准号:
19540160 - 财政年份:2007
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical models of elastic waves and their inverse problems
弹性波数学模型及其反问题
- 批准号:
17540145 - 财政年份:2005
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of fundamental properties of elastic equations
弹性方程基本性质分析
- 批准号:
15540152 - 财政年份:2003
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of special waves in elastic bodies
弹性体中的特殊波分析
- 批准号:
10640151 - 财政年份:1998
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Inverse problems of the scattering by obstacles
障碍物散射反问题
- 批准号:
61540077 - 财政年份:1986
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似国自然基金
基于衰减和频散逼近的TI粘弹性波方程有限差分数值求解新方法研究
- 批准号:42304123
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
流体力学和非线性弹性力学中偏微分方程解的正则性研究
- 批准号:12301141
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
双曲型液晶弹性体动力学方程的分析和渐近问题
- 批准号:12371224
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于解耦方程的横向各向同性介质弹性波场解耦与弹性逆时偏移
- 批准号:42374159
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
粘弹性薄板振动方程解的定性研究
- 批准号:12361047
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
相似海外基金
Partial Differential Equations for Incompressible Fluids and Elastic Solids
不可压缩流体和弹性固体的偏微分方程
- 批准号:
2206453 - 财政年份:2022
- 资助金额:
$ 1.73万 - 项目类别:
Standard Grant
Anisotropic elastic-plastic constitutive equations considering the damage tensor and its application to the deformation process of porous metals
考虑损伤张量的各向异性弹塑性本构方程及其在多孔金属变形过程中的应用
- 批准号:
15K05672 - 财政年份:2015
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Solutions and Stability Analysis of Navier's Equations for Hexagonally and Cubically Symmetric Elastic Media
六方对称和立方对称弹性介质纳维方程组的解及稳定性分析
- 批准号:
410922-2011 - 财政年份:2012
- 资助金额:
$ 1.73万 - 项目类别:
Postgraduate Scholarships - Master's
Mathematical analysis of the non-Newtonian fluids flow
非牛顿流体流动的数学分析
- 批准号:
23654055 - 财政年份:2011
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Solutions and Stability Analysis of Navier's Equations for Hexagonally and Cubically Symmetric Elastic Media
六方对称和立方对称弹性介质纳维方程组的解及稳定性分析
- 批准号:
410922-2011 - 财政年份:2011
- 资助金额:
$ 1.73万 - 项目类别:
Postgraduate Scholarships - Master's