OAC Core: Scalable Graph ML on Distributed Heterogeneous Systems

OAC 核心:分布式异构系统上的可扩展图 ML

基本信息

  • 批准号:
    2209563
  • 负责人:
  • 金额:
    $ 59.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Methods that employ graph machine learning (Graph ML), which is a sub-discipline within machine learning that deals with graph data, are becoming important in many key science and engineering domains. For example, the predictive power of graph embedding has been effectively utilized in domains such as social media, biology, pharmacology, and knowledge understanding. However, such methods typically come with an expensive computational footprint, as the computations often need to be performed in real-time on very large and highly heterogeneous static and dynamic graphs with billions of vertices and edges of different types. This project aims at conducting multi-pronged research to enable creation of a cyberinfrastructure (CI) toolkit to run such complex Graph ML applications on emerging heterogeneous distributed systems. The objective of this project is to develop high-performance Graph ML algorithms for key graph workflows spanning multiple scientific and engineering domains targeting distributed heterogeneous systems composed of multi-core processors, Graphics Processing Units (GPUs), Field Programmable Gate Arrays (FPGAs), accelerators and high bandwidth memory interconnected with cache coherent interfaces. The project develops a scalable, deployable, and robust CI toolkit consisting of: (1) novel graph sampling algorithms and efficient Graph ML models for low complexity training and inference computation on static and dynamic graphs; (2) a heterogeneity-aware hardware mapping methodology to accelerate these algorithms and models; and (3) software and hardware libraries for automatic design generation. The project develops proof of concept software for the ML and Data Science communities to facilitate end-to-end deployment of various large-scale applications. Given that graph neural networks are increasingly becoming an important tool for analyzing data in many diverse domains, the outcomes of this project will have a strong impact across a broad range of disciplines, including domains that rely on edge computing, such as autonomous vehicles and smart cities. The project has a robust plan to integrate research into education programs and focuses on activities that promote involvement of students from minority and economically disadvantaged backgrounds into the research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图机器学习(Graph ML)是机器学习中处理图数据的一个子学科,采用图机器学习(Graph ML)的方法在许多关键科学和工程领域变得越来越重要。例如,图嵌入的预测能力已在社交媒体、生物学、药理学和知识理解等领域得到有效利用。然而,此类方法通常需要昂贵的计算足迹,因为计算通常需要在具有数十亿个不同类型的顶点和边的非常大且高度异构的静态和动态图上实时执行。该项目旨在进行多管齐下的研究,以创建网络基础设施 (CI) 工具包,以便在新兴的异构分布式系统上运行此类复杂的 Graph ML 应用程序。该项目的目标是为跨越多个科学和工程领域的关键图工作流程开发高性能图 ML 算法,针对由多核处理器、图形处理单元 (GPU)、现场可编程门阵列 (FPGA) 组成的分布式异构系统,加速器和高带宽内存与高速缓存一致性接口互连。该项目开发了一个可扩展、可部署且强大的 CI 工具包,其中包括:(1)新颖的图采样算法和高效的图 ML 模型,用于静态和动态图的低复杂度训练和推理计算; (2) 一种异构感知硬件映射方法来加速这些算法和模型; (3)用于自动设计生成的软件和硬件库。该项目为机器学习和数据科学社区开发概念验证软件,以促进各种大型应用程序的端到端部署。鉴于图神经网络日益成为分析许多不同领域数据的重要工具,该项目的成果将对广泛的学科产生重大影响,包括依赖边缘计算的领域,例如自动驾驶汽车和智能手机城市。该项目有一个强有力的计划,将研究融入教育计划,并重点关注促进少数族裔和经济弱势背景的学生参与研究的活动。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力评估进行评估,认为值得支持。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Performance Modeling Sparse MTTKRP Using Optical Static Random Access Memory on FPGA
使用 FPGA 上的光学静态随机存取存储器对稀疏 MTTKRP 进行性能建模
  • DOI:
    10.1109/hpec55821.2022.9926407
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wijeratne, Sasindu;Jaiswal, Akhilesh;Jacob, Ajey P.;Zhang, Bingyi;Prasanna, Viktor
  • 通讯作者:
    Prasanna, Viktor
Accelerating Sparse MTTKRP for Tensor Decomposition on FPGA
加速 FPGA 上张量分解的稀疏 MTTKRP
HTNet: Dynamic WLAN Performance Prediction using Heterogenous Temporal GNN
Modeling the Energy Efficiency of GEMM using Optical Random Access Memory
  • DOI:
    10.1109/hpec55821.2022.9926291
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bingyi Zhang;Akhilesh R. Jaiswal;Clynn Mathew;R. T. Lakkireddy;Ajey P. Jacob;Sasindu Wijeratne;V. Prasanna
  • 通讯作者:
    Bingyi Zhang;Akhilesh R. Jaiswal;Clynn Mathew;R. T. Lakkireddy;Ajey P. Jacob;Sasindu Wijeratne;V. Prasanna
Graph Neural Network for Accurate and Low-complexity SAR ATR
  • DOI:
    10.48550/arxiv.2305.07119
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bingyi Zhang;Sasindu Wijeratne;R. Kannan;V. Prasanna;Carl E. Busart
  • 通讯作者:
    Bingyi Zhang;Sasindu Wijeratne;R. Kannan;V. Prasanna;Carl E. Busart
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Viktor Prasanna其他文献

Accelerating Deep Neural Network guided MCTS using Adaptive Parallelism
使用自适应并行加速深度神经网络引导的 MCTS
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuan Meng;Qian Wang;Tianxin Zu;Viktor Prasanna
  • 通讯作者:
    Viktor Prasanna
PEARL: Enabling Portable, Productive, and High-Performance Deep Reinforcement Learning using Heterogeneous Platforms
PEARL:使用异构平台实现便携式、高效且高性能的深度强化学习

Viktor Prasanna的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Viktor Prasanna', 18)}}的其他基金

IUCRC Phase I University of Southern California: Center for Intelligent Distributed Embedded Applications and Systems (IDEAS)
IUCRC 第一期南加州大学:智能分布式嵌入式应用和系统中心 (IDEAS)
  • 批准号:
    2231662
  • 财政年份:
    2023
  • 资助金额:
    $ 59.97万
  • 项目类别:
    Continuing Grant
Elements: Portable Library for Homomorphic Encrypted Machine Learning on FPGA Accelerated Cloud Cyberinfrastructure
元素:FPGA 加速云网络基础设施上同态加密机器学习的便携式库
  • 批准号:
    2311870
  • 财政年份:
    2023
  • 资助金额:
    $ 59.97万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Accelerating Privacy Preserving Deep Learning for Real-time Secure Applications
SaTC:核心:小型:加速实时安全应用程序的隐私保护深度学习
  • 批准号:
    2104264
  • 财政年份:
    2021
  • 资助金额:
    $ 59.97万
  • 项目类别:
    Standard Grant
Collaborative Research:PPoSS:Planning: Streamware - A Scalable Framework for Accelerating Streaming Data Science
合作研究:PPoSS:规划:Streamware - 加速流数据科学的可扩展框架
  • 批准号:
    2119816
  • 财政年份:
    2021
  • 资助金额:
    $ 59.97万
  • 项目类别:
    Standard Grant
RAPID: ReCOVER: Accurate Predictions and Resource Allocation for COVID-19 Epidemic Response
RAPID:ReCOVER:COVID-19 流行病应对的准确预测和资源分配
  • 批准号:
    2027007
  • 财政年份:
    2020
  • 资助金额:
    $ 59.97万
  • 项目类别:
    Standard Grant
CNS Core: Small: AccelRITE: Accelerating ReInforcemenT Learning based AI at the Edge Using FPGAs
CNS 核心:小型:AccelRITE:使用 FPGA 在边缘加速基于强化学习的 AI
  • 批准号:
    2009057
  • 财政年份:
    2020
  • 资助金额:
    $ 59.97万
  • 项目类别:
    Standard Grant
OAC Core: Small: Scalable Graph Analytics on Emerging Cloud Infrastructure
OAC 核心:小型:新兴云基础设施上的可扩展图形分析
  • 批准号:
    1911229
  • 财政年份:
    2019
  • 资助金额:
    $ 59.97万
  • 项目类别:
    Standard Grant
FoMR: DeepFetch: Compact Deep Learning based Prefetcher on Configurable Hardware
FoMR:DeepFetch:可配置硬件上基于紧凑深度学习的预取器
  • 批准号:
    1912680
  • 财政年份:
    2019
  • 资助金额:
    $ 59.97万
  • 项目类别:
    Standard Grant
CNS: CSR: Small: Exploiting 3D Memory for Energy-Efficient Memory-Driven Computing
CNS:CSR:小型:利用 3D 内存实现节能内存驱动计算
  • 批准号:
    1643351
  • 财政年份:
    2016
  • 资助金额:
    $ 59.97万
  • 项目类别:
    Standard Grant
EAGER: Safer Connected Communities Through Integrated Data-driven Modeling, Learning, and Optimization
EAGER:通过集成的数据驱动建模、学习和优化打造更安全的互联社区
  • 批准号:
    1637372
  • 财政年份:
    2016
  • 资助金额:
    $ 59.97万
  • 项目类别:
    Standard Grant

相似国自然基金

可扩展的样本自适应多核聚类
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
面向激光聚变模拟的大规模异构众核系统可扩展并行算法与优化方法
  • 批准号:
    61432005
  • 批准年份:
    2014
  • 资助金额:
    320.0 万元
  • 项目类别:
    重点项目
面向气候和湍流模拟的百万量级异构众核可扩展并行算法与优化方法
  • 批准号:
    61432018
  • 批准年份:
    2014
  • 资助金额:
    300.0 万元
  • 项目类别:
    重点项目
可扩展至数十万核的全隐式时空耦合并行区域分解算法研究
  • 批准号:
    91330111
  • 批准年份:
    2013
  • 资助金额:
    70.0 万元
  • 项目类别:
    重大研究计划
异构众核芯片的可扩展全局功耗管理机制与算法研究
  • 批准号:
    61300037
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

OAC Core: A Scalable and Deployable Container Orchestration Cyber Infrastructure Toolkit for Deploying Big Data Analytics Applications in Public Cloud
OAC Core:用于在公共云中部署大数据分析应用程序的可扩展和可部署的容器编排网络基础设施工具包
  • 批准号:
    2313738
  • 财政年份:
    2023
  • 资助金额:
    $ 59.97万
  • 项目类别:
    Standard Grant
OAC Core: Geometry-aware and Deep Learning-based Cyberinfrastructure for Scalable Modeling of Solids and Fluids
OAC 核心:基于几何感知和深度学习的网络基础设施,用于固体和流体的可扩展建模
  • 批准号:
    2211908
  • 财政年份:
    2022
  • 资助金额:
    $ 59.97万
  • 项目类别:
    Standard Grant
OAC Core: A Scalable and Deployable Container Orchestration Cyber Infrastructure Toolkit for Deploying Big Data Analytics Applications in Public Cloud
OAC Core:用于在公共云中部署大数据分析应用程序的可扩展和可部署的容器编排网络基础设施工具包
  • 批准号:
    2212256
  • 财政年份:
    2022
  • 资助金额:
    $ 59.97万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Robust, Scalable, and Practical Low Rank Approximation
合作研究:OAC 核心:稳健、可扩展且实用的低阶近似
  • 批准号:
    2106738
  • 财政年份:
    2021
  • 资助金额:
    $ 59.97万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Robust, Scalable, and Practical Low-Rank Approximation
合作研究:OAC 核心:稳健、可扩展且实用的低阶近似
  • 批准号:
    2106920
  • 财政年份:
    2021
  • 资助金额:
    $ 59.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了