CNS Core: Small: AccelRITE: Accelerating ReInforcemenT Learning based AI at the Edge Using FPGAs

CNS 核心:小型:AccelRITE:使用 FPGA 在边缘加速基于强化学习的 AI

基本信息

  • 批准号:
    2009057
  • 负责人:
  • 金额:
    $ 49.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Artificial Intelligence (AI) has led to significant progress in several domains such as self-driving cars and robotics. Reinforcement Learning (RL) is a class of AI that includes algorithms that enable machines to teach themselves optimal decision making. However, RL algorithms are complex and time-consuming, which render them unsuitable for applications that require fast response. Heterogeneous platforms, which couple a Central Processing Unit (CPU) with an integrated circuit that can be configured - Field Programmable Gate Arrays (FPGA) are promising candidates for implementing fast algorithms due to their capabilities. The project will develop fast implementations of RL algorithms targeting such platforms. The intellectual merits of the project include the research and development of innovative optimizations that exploit the heterogeneity of the emerging class of FPGA devices and address challenges such as conflicts in parallel accesses to shared objects, irregular memory accesses, and overheads in fine grained acceleration. The project will develop parameterized performance models for key AI kernels – Stochastic Gradient Descent (SGD), conjugate gradient, parallel hash tables, and neural networks, to enable energy-performance trade-off analysis. The proposed project will develop a novel spatiotemporal constraint graph-based design space exploration technique to accelerate RL algorithms by taking a holistic view of the algorithm.The broader impact of the project is in efficient use of heterogeneous architectures consisting of CPUs and FPGAs coupled with cache coherent memory for accelerating AI for edge computing. Successful completion of this project will lead to significant increase in the complexity of AI applications that can be deployed in real world environments. This will lead to a dramatic improvement in the capabilities of AI enabled devices such as self-driving cars, robotics, and wearable healthcare devices. The project will also constitute materials appropriate for inclusion in graduate and undergraduate courses.All software developed in the project will be posted on github at: https://github.com/pgroupATusc. Software releases will be maintained for a period of not less than 3 years after the conclusion of the grant.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能 (AI) 在自动驾驶汽车和机器人等多个领域取得了重大进展,强化学习 (RL) 是一类人工智能,其中包括使机器能够自学最佳决策的算法。复杂且耗时,这使得它们不适合需要快速响应的应用。异构平台将中央处理单元(CPU)与可配置的集成电路相结合 - 现场可编程门阵列(FPGA)很有前途。该项目将开发针对此类平台的 RL 算法的快速实现,该项目的智力优势包括研究和开发利用新兴 FPGA 设备的异构性并解决问题的创新优化。该项目将为关键人工智能内核开发参数化性能模型——随机梯度下降(SGD)、共轭梯度、并行哈希等挑战。该项目将开发一种新颖的基于时空约束图的设计空间探索技术,通过整体看待算法来加速强化学习算法。该项目有效利用由 CPU 和 FPGA 组成的异构架构以及高速缓存一致性内存来加速边缘计算的人工智能,该项目的成功完成将导致可在现实世界环境中部署的人工智能应用程序的复杂性显着增加。这将导致该项目还将构建适合研究生和本科生课程的材料。该项目开发的所有软件都将发布在github 网址:https://github.com/pgroupATusc。软件版本将在资助结束后保留​​不少于 3 年。该奖项反映了 NSF 的法定使命,并通过评估认为值得支持。基金会的智力价值以及更广泛的影响审查标准。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DYNAMAP: Dynamic Algorithm Mapping Framework for Low Latency CNN Inference
A Framework for Mapping DRL Algorithms With Prioritized Replay Buffer Onto Heterogeneous Platforms
FGYM: Toolkit for Benchmarking FPGA based Reinforcement Learning Algorithms
FGYM:基于 FPGA 的强化学习算法基准测试工具包
BRAC+: Improved Behavior Regularized Actor Critic for Offline Reinforcement Learning
  • DOI:
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chi Zhang;S. Kuppannagari;V. Prasanna
  • 通讯作者:
    Chi Zhang;S. Kuppannagari;V. Prasanna
A Framework for Monte-Carlo Tree Search on CPU-FPGA Heterogeneous Platform via on-chip Dynamic Tree Management
基于片上动态树管理的 CPU-FPGA 异构平台蒙特卡罗树搜索框架
  • DOI:
    10.1145/3543622.3573177
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Meng, Yuan;Kannan, Rajgopal;Prasanna, Viktor
  • 通讯作者:
    Prasanna, Viktor
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Viktor Prasanna其他文献

Accelerating Deep Neural Network guided MCTS using Adaptive Parallelism
使用自适应并行加速深度神经网络引导的 MCTS
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuan Meng;Qian Wang;Tianxin Zu;Viktor Prasanna
  • 通讯作者:
    Viktor Prasanna
Accelerating GNN Training on CPU+Multi-FPGA Heterogeneous Platform
在 CPU 多 FPGA 异构平台上加速 GNN 训练
PEARL: Enabling Portable, Productive, and High-Performance Deep Reinforcement Learning using Heterogeneous Platforms
PEARL:使用异构平台实现便携式、高效且高性能的深度强化学习

Viktor Prasanna的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Viktor Prasanna', 18)}}的其他基金

IUCRC Phase I University of Southern California: Center for Intelligent Distributed Embedded Applications and Systems (IDEAS)
IUCRC 第一期南加州大学:智能分布式嵌入式应用和系统中心 (IDEAS)
  • 批准号:
    2231662
  • 财政年份:
    2023
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Continuing Grant
Elements: Portable Library for Homomorphic Encrypted Machine Learning on FPGA Accelerated Cloud Cyberinfrastructure
元素:FPGA 加速云网络基础设施上同态加密机器学习的便携式库
  • 批准号:
    2311870
  • 财政年份:
    2023
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
OAC Core: Scalable Graph ML on Distributed Heterogeneous Systems
OAC 核心:分布式异构系统上的可扩展图 ML
  • 批准号:
    2209563
  • 财政年份:
    2022
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Accelerating Privacy Preserving Deep Learning for Real-time Secure Applications
SaTC:核心:小型:加速实时安全应用程序的隐私保护深度学习
  • 批准号:
    2104264
  • 财政年份:
    2021
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
Collaborative Research:PPoSS:Planning: Streamware - A Scalable Framework for Accelerating Streaming Data Science
合作研究:PPoSS:规划:Streamware - 加速流数据科学的可扩展框架
  • 批准号:
    2119816
  • 财政年份:
    2021
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
RAPID: ReCOVER: Accurate Predictions and Resource Allocation for COVID-19 Epidemic Response
RAPID:ReCOVER:COVID-19 流行病应对的准确预测和资源分配
  • 批准号:
    2027007
  • 财政年份:
    2020
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
OAC Core: Small: Scalable Graph Analytics on Emerging Cloud Infrastructure
OAC 核心:小型:新兴云基础设施上的可扩展图形分析
  • 批准号:
    1911229
  • 财政年份:
    2019
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
FoMR: DeepFetch: Compact Deep Learning based Prefetcher on Configurable Hardware
FoMR:DeepFetch:可配置硬件上基于紧凑深度学习的预取器
  • 批准号:
    1912680
  • 财政年份:
    2019
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
CNS: CSR: Small: Exploiting 3D Memory for Energy-Efficient Memory-Driven Computing
CNS:CSR:小型:利用 3D 内存实现节能内存驱动计算
  • 批准号:
    1643351
  • 财政年份:
    2016
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
EAGER: Safer Connected Communities Through Integrated Data-driven Modeling, Learning, and Optimization
EAGER:通过集成的数据驱动建模、学习和优化打造更安全的互联社区
  • 批准号:
    1637372
  • 财政年份:
    2016
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant

相似国自然基金

核受体RORgamma调控肿瘤微生态促进非小细胞肺癌恶性进展的作用机制研究
  • 批准号:
    82373186
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
肾去交感神经术促进下丘脑室旁核小胶质细胞M2型极化减轻心衰损伤的机制研究
  • 批准号:
    82370387
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
  • 批准号:
    82303969
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
前丘脑室旁核小胶质细胞经由TNF-α参与强迫进食行为的作用及机制研究
  • 批准号:
    82301521
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小胶质细胞调控外侧隔核-腹侧被盖区神经环路介导社交奖赏障碍的机制研究
  • 批准号:
    82304474
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CNS Core: Small: Core Scheduling Techniques and Programming Abstractions for Scalable Serverless Edge Computing Engine
CNS Core:小型:可扩展无服务器边缘计算引擎的核心调度技术和编程抽象
  • 批准号:
    2322919
  • 财政年份:
    2024
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
CNS Core: Small: Network Wide Sensing by Leveraging Cellular Communication Networks
CNS 核心:小型:利用蜂窝通信网络进行全网络传感
  • 批准号:
    2343469
  • 财政年份:
    2024
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
CNS Core: Small: Intelligent Fault Injection to Expose and Reproduce Production-Grade Bugs in Cloud Systems
CNS 核心:小型:智能故障注入以暴露和重现云系统中的生产级错误
  • 批准号:
    2317698
  • 财政年份:
    2023
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
CNS Core: Small: Repurposing Smartphones to Minimize Carbon
CNS 核心:小型:重新利用智能手机以最大限度地减少碳排放
  • 批准号:
    2233894
  • 财政年份:
    2023
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了