SenSE: Artificial Intelligence-enabled Multimodal Stress Sensing for Precision Health

SenSE:人工智能支持的多模态压力传感,实现精准健康

基本信息

  • 批准号:
    2037304
  • 负责人:
  • 金额:
    $ 75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

A shared objective of precision health and psychiatry is to precisely measure relevant symptoms and sustain mental health with high precision. Best mental health practices propose the need to identify the early signs of risk factors such as stress. However, mental health research focuses primarily on late-stage symptom assessment via self-report data such as surveys. As a result, clinical practice for mental health mostly consists of reactive treatments. This grant seeks to advance precision mental health by developing an Artificial Intelligence (AI) -enabled platform for continuous and precise measurements of stress. This platform leverages data from a skin-like wearable device that measures cortisol, a stress hormone from sweat, and from sensing techniques based on estimating muscle stiffness changes derived from “fight or flight” stress response, by “repurposing” signals available in billions of existing mobile and computing devices. These data streams will be combined using Machine Learning (ML) algorithms for optimizing data collection, power consumption, and accuracy. Since stress and its effect on mental health deterioration are pervasive, the broader impact of this work could be enormous as well as the basis for new research on precision health in psychiatry. The overall goal of this project is to develop a multimodal sensing platform leveraging AI/ML algorithms to optimize stress prediction and hardware performance. The first step involves validating the skin-inspired wearable for lab stress measurements, followed by redesigning, and validating as a continuous in-the-wild device. It features a set of physiological sensors for collecting heart rate variability (HRV) and electrodermal activity (EDA) data, signals directly correlated with the autonomous nervous system (ANS) response. Two types of sensors for continuous measurement of cortisol level will be tested for high accuracy and selectivity. However, processing and transmitting sensor data continuously in-the-wild requires significant battery capacity. To address this issue, the second step combines the wearable with passive biomechanical sensors and AI/ML algorithms to optimize for continuous stress detection in-the-wild. Additionally, passive sensors transform computer peripheral data (e.g., mice, trackpads, smartphone screens) into parameters correlated to muscle stiffness linked to the “fight or flight” stress response. For example, the system uses inverse filtering techniques to approximate mass-spring-damper (MSD) models derived from mouse displacements or force models derived from the area under the finger on a trackpad. The system employs several AI/ML algorithms including a) compressive sensing to optimize energy efficiency, b) autoencoder models to correct for artifacts, missing data or sensor failures, c) active learning to discover optimal collection times of stress events and labels, and d) cloud computing powered data collection and processing to make predictions based on the best available data. The intellectual merits of this work include 1) a multimodal stress monitoring wearable that measures cortisol from sweat and other physiological signals, 2) biomechanical sensing algorithms that repurpose movement and touch data into muscle stiffness, and 3) AI/ML algorithms that integrate this data to optimize wearable and smartphone power usage, learn ideal sensing scenarios with high precision, improve privacy, optimize data labeling, and optimize the early prediction of stress.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
精准健康和精神病学的共同目标是精确测量相关症状并高精度维持心理健康,因此需要识别压力等危险因素的早期迹象。然而,心理健康研究主要关注晚期症状。通过自我报告数据(例如调查)进行阶段症状评估因此,心理健康的临床实践主要包括反应性治疗,该赠款旨在通过开发人工智能(AI)支持的平台来促进精确的心理健康。该平台利用数据进行精确测量。来自测量皮质醇(汗液中的一种压力荷尔蒙)的类肤可穿戴设备,以及基于估计“战斗或逃跑”压力反应所产生的肌肉僵硬变化的传感技术,通过“重新利用”数十亿现有移动和计算中可用的信号这些数据流将使用机器学习 (ML) 算法进行组合,以优化数据收集、功耗和准确性。由于压力及其对心理健康恶化的影响普遍存在,因此这项工作的更广泛影响可能是巨大的。的基础该项目的总体目标是开发一个利用人工智能/机器学习算法来优化压力预测和硬件性能的多模态传感平台,第一步是验证基于皮肤的可穿戴设备的实验室压力测量。通过重新设计和验证,它是一种连续的野外设备,具有一组生理传感器,用于收集心率变异性 (HRV) 和皮肤电活动 (EDA) 数据,这些信号与自主神经系统 (ANS) 反应直接相关。两种类型。用于连续测量皮质醇水平的传感器将进行高精度和选择性测试,但是,在野外连续处理和传输传感器数据需要大量的电池容量,为了解决这个问题,第二步将可穿戴设备与无源生物力学传感器结合起来。此外,人工智能/机器学习算法可优化野外连续压力检测,被动传感器将计算机外围设备数据(例如鼠标、触控板、智能手机屏幕)转换为与“战斗或逃跑”压力反应相关的肌肉硬度相关的参数。例如,该系统使用逆滤波技术来近似源自鼠标位移的质量-弹簧-阻尼器 (MSD) 模型或源自触控板上手指下方区域的力模型。该系统采用多种 AI/ML 算法,包括 a) 压缩传感来优化。能源效率,b) 自动编码器模型,用于纠正伪影、丢失数据或传感器故障,c) 主动学习,发现压力事件和标签的最佳收集时间,以及 d) 云计算支持的数据收集和处理,以根据最佳结果进行预测可用的这项工作的智力优点包括 1) 一种多模式压力监测可穿戴设备,可测量汗液和其他生理信号中的皮质醇,2) 将运动和触摸数据重新用于肌肉僵硬的生物力学传感算法,以及 3) 集成的 AI/ML 算法。这些数据可用于优化可穿戴设备和智能手机的功耗、高精度学习理想的传感场景、改善隐私、优化数据标签以及优化压力的早期预测。该奖项是 NSF 的法定使命,并通过使用评估被认为值得支持。基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal sets and solution paths of ReLU networks
ReLU网络的最优集和求解路径
Training Quantized Neural Networks to Global Optimality via Semidefinite Programming
通过半定规划训练量化神经网络以获得全局最优性
Convex Neural Autoregressive Models: Towards Tractable, Expressive, and Theoretically-Backed Models for Sequential Forecasting and Generation
凸神经自回归模型:面向顺序预测和生成的易于处理、富有表现力且有理论支持的模型
  • DOI:
    10.1109/icassp39728.2021.9413662
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gupta, Vikul;Bartan, Burak;Ergen, Tolga;Pilanci, Mert
  • 通讯作者:
    Pilanci, Mert
Neural Fisher Discriminant Analysis: Optimal Neural Network Embeddings in Polynomial Time
神经 Fisher 判别分析:多项式时间内的最优神经网络嵌入
Design considerations of a wearable electronic-skin for mental health and wellness: balancing bio signals and human factors
用于心理健康和保健的可穿戴电子皮肤的设计考虑因素:平衡生物信号和人为因素
  • DOI:
    10.1101/2021.01.20.427496
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yasser Khan; Matthew L.
  • 通讯作者:
    Matthew L.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhenan Bao其他文献

Biomimetic Sorbents for Selective CO2 Capture Investigators
用于选择性二氧化碳捕获研究人员的仿生吸附剂
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Wilcox;Zhenan Bao;Jiajun He
  • 通讯作者:
    Jiajun He
Rational solvent molecule tuning for high-performance lithium metal battery electrolytes
高性能锂金属电池电解质的合理溶剂分子调节
  • DOI:
    10.1038/s41560-021-00962-y
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
    56.7
  • 作者:
    Zhiao Yu;Paul E. Rudnicki;Zewen Zhang;Zhuojun Huang;Hasan Çelik;Solomon T. Oyakhire;Yuelang Chen;Xian Kong;Sang Cheol Kim;Xin Xiao;Hansen Wang;Yu;G. Kamat;Mun Sek Kim;S. Bent;Jian Qin;Yi Cui;Zhenan Bao
  • 通讯作者:
    Zhenan Bao
Molecular nano-junctions formed with different metallic electrodes
不同金属电极形成的分子纳米结
  • DOI:
    10.1088/0957-4484/16/4/027
  • 发表时间:
    2005-04-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    N. Zhitenev;A. Erbe;Zhenan Bao;Weirong Jiang;E. Garfunkel
  • 通讯作者:
    E. Garfunkel
Effect of Spacer Length of Siloxane‐Terminated Side Chains on Charge Transport in Isoindigo‐Based Polymer Semiconductor Thin Films
硅氧烷封端侧链的间隔长度对异靛蓝聚合物半导体薄膜中电荷传输的影响
  • DOI:
    10.1002/adfm.201500684
  • 发表时间:
    2015-06-01
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Jianguo Mei;Hung‐Chin Wu;Ying Diao;A. Appleton;Hong Wang;Y. Zhou;Wen;Tadanori Kurosawa;Wen‐Chang Chen;Zhenan Bao
  • 通讯作者:
    Zhenan Bao
Evolution and Interplay of Lithium Metal Interphase Components Revealed by Experimental and Theoretical Studies.
实验和理论研究揭示的锂金属相间成分的演变和相互作用。
  • DOI:
    10.1021/jacs.3c14232
  • 发表时间:
    2024-04-17
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Sha Tan;Dacheng Kuai;Zhiao Yu;Saul Perez;Muhammad Mominur Rahman;Kangxuan Xia;Nan Wang;Yuelang Chen;Xiao;Jie Xiao;Jun Liu;Yi Cui;Zhenan Bao;Perla B. Balbuena;Enyuan Hu
  • 通讯作者:
    Enyuan Hu

Zhenan Bao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhenan Bao', 18)}}的其他基金

Two-way shape-memory polymer design based on periodic dynamic crosslinks inducing supramolecular nanostructures
基于周期性动态交联诱导超分子纳米结构的双向形状记忆聚合物设计
  • 批准号:
    2342272
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
EAGER: Superlattice-induced polycrystalline and single-crystalline structures in conjugated polymers
EAGER:共轭聚合物中超晶格诱导的多晶和单晶结构
  • 批准号:
    2203318
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
FMRG: Genetically-targeted chemical assembly (GTCA) of functional structures in living cells, tissues, and animals
FMRG:活细胞、组织和动物功能结构的基因靶向化学组装 (GTCA)
  • 批准号:
    2037164
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
DMREF: High-Throughput Morphology Prediction for Organic Solar Cells
DMREF:有机太阳能电池的高通量形态预测
  • 批准号:
    1434799
  • 财政年份:
    2014
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Patterning of Large Array Organic Semiconductor Single Crystals
大阵列有机半导体单晶的图案化
  • 批准号:
    1303178
  • 财政年份:
    2013
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Materials World Network: Understanding the Design and Characterization of Air-Stable N-Type Charge Transfer Dopants for Organic Electronics
材料世界网络:了解有机电子器件空气稳定 N 型电荷转移掺杂剂的设计和表征
  • 批准号:
    1209468
  • 财政年份:
    2012
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Liquid phase organic transistor sensor platform based on surface sorted semiconducting carbon nanotubes for small molecules and biological targets
基于表面排序半导体碳纳米管的用于小分子和生物目标的液相有机晶体管传感器平台
  • 批准号:
    1101901
  • 财政年份:
    2012
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Single Molecule Devices with Self-Aligned Contacts
具有自对准接触的单分子器件
  • 批准号:
    1006989
  • 财政年份:
    2010
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
2010 Electronic Processes in Organic Materials Gordon Research Conference; Mount Holyoke College; South Hadley, MA; July 25-30, 2010
2010年有机材料电子过程戈登研究会议;
  • 批准号:
    0968209
  • 财政年份:
    2010
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Mechanistic Studies of Carbon Naotube Sorting on Functional Surfaces
功能表面碳纳米管分选机理研究
  • 批准号:
    0901414
  • 财政年份:
    2009
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant

相似国自然基金

光控NO人造细胞的构建及其对黑色素瘤的治疗研究
  • 批准号:
    22374033
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于阻燃三维集流体/人造保护层的热稳定钠(钾)金属负极设计构筑及其调控枝晶生长动力学研究
  • 批准号:
    52302085
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于YE1-BE3-FNLS编辑人造血干细胞的研究
  • 批准号:
    32371549
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
可级联催化和运动变形的人造细胞构建及其在硼中子俘获治疗肿瘤中的研究
  • 批准号:
    82373206
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于CaO-TiO2-ZrO2-Nd2O3(CeO2)体系的新型人造岩石基材及其稳定性研究
  • 批准号:
    52361002
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
  • 批准号:
    DP240100602
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Discovery Projects
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
  • 批准号:
    10106704
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    EU-Funded
Artificial Intelligence X-ray Imaging
人工智能 X 射线成像
  • 批准号:
    EP/X038157/1
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Research Grant
Cryptosporidium Artificial Intelligence Network Analysis of Drug Action (CANADA)
隐孢子虫药物作用人工智能网络分析(加拿大)
  • 批准号:
    EP/Z532885/1
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了