SaTC: CORE: Small: Accelerating Privacy Preserving Deep Learning for Real-time Secure Applications

SaTC:核心:小型:加速实时安全应用程序的隐私保护深度学习

基本信息

  • 批准号:
    2104264
  • 负责人:
  • 金额:
    $ 49.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Currently, to draw insights from data, the owner needs to send them to a cloud server to perform complex Machine Learning based analytics. To enable data security, the data is encrypted by the owner and sent to the cloud server where it is decrypted to perform analytics. For privacy sensitive applications such as healthcare, finance, etc., this leads to data security concerns as the decrypted data on the cloud may be snooped by malicious actors. To address this concern, this proposal will develop techniques to efficiently perform Machine Learning (ML) analytics on encrypted data, without a need for decoding, thereby enabling end-to-end privacy.The proposed project will develop optimizations targeting Field Programmable Gate Arrays (FPGAs) to address the challenges such as conflicts in parallel access to shared objects, irregular memory accesses, low data reuse, etc., which are prevalent in many application domains. Moreover, the parameterized FPGA Intellectual Property (IP) cores for the key kernels of privacy preserving Deep Neural Networks (DNNs) such as Number Theoretic Transform (NTT), rotation, multiplication, etc., that will be developed in the project will allow application developers to easily implement a wide variety of privacy preserving Machine Learning/Deep Learning models. Additionally, the proposed acceleration techniques are applicable to applications which rely on post-quantum lattice based cryptography.The broader impact of this work is in efficient use of emerging data center and cloud platforms for accelerating Homomorphic Encryption (HE) based DNNs for real-time secure applications. Successful completion of this project will lead to a significant increase in the capabilities of privacy sensitive applications by enabling them to utilize public clouds in a trusted and secure manner. The project will identify and expose underrepresented and underserved students to STEM (Science, Technology, Engineering, Mathematics) through various programs at the University of Southern California. The proposed research will also constitute materials appropriate for inclusion in graduate and undergraduate courses.All software developed in the project will be posted on github at: https://github.com/pgroupATusc. Software releases will be maintained for a period of not less than 3 years after the conclusion of the grant.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当前,要从数据中获取见解,所有者需要将其发送到云服务器以执行基于机器学习的复杂分析。为了启用数据安全性,数据由所有者加密并发送到云服务器,并将其解密以执行分析。对于诸如医疗保健,金融等敏感的隐私敏感应用程序,这会导致数据安全性问题,因为恶意参与者可能会窥探云上的数据。为了解决这个问题,该建议将开发有效执行机器学习的技术(ML)分析,而无需解码,从而实现端到端的隐私。拟议的项目将开发针对现场可编程门阵列(FPGAS)的优化,以应对许多访问的挑战,以解决许多访问的挑战,这些挑战是在相互访问的情况下进行的。域。此外,用于保留深度神经网络(DNN)的关键内核的参数化FPGA知识产(IP)核心,例如数字理论变换(NTT),旋转,乘法等,该项目将在项目中开发,该项目将允许应用程序开发人员轻松地实施各种隐私的机器学习/深度学习模型。此外,所提出的加速技术适用于依靠基于量词后晶格的密码学的应用程序。这项工作的更广泛影响在于有效利用新兴数据中心和云平台,用于加速基于同质的DNN,以实现实时安全应用。成功完成该项目将通过使他们能够以可信赖和安全的方式利用公共云,从而大大提高隐私敏感应用程序的功能。该项目将通过南加州大学的各种课程来识别和揭示服务不足和服务不足的学生(科学,技术,工程,数学)。拟议的研究还将构成适合纳入研究生和本科课程的材料。项目中开发的所有软件将在GitHub上发布:https://github.com/pgroupatusc。赠款结束后,将在不少于3年的时间内维持软件版本。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响评估标准通过评估来支持的。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FPGA Acceleration of Fully Homomorphic Encryption over the Torus
HyScale-GNN: A Scalable Hybrid GNN Training System on Single-Node Heterogeneous Architecture
NTTGen: a framework for generating low latency NTT implementations on FPGA
FPGA Accelerator for Homomorphic Encrypted Sparse Convolutional Neural Network Inference
用于同态加密稀疏卷积神经网络推理的 FPGA 加速器
  • DOI:
    10.1109/fccm53951.2022.9786115
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang, Yang;Kuppannagari, Sanmukh R.;Kannan, Rajgopal;Prasanna, Viktor K.
  • 通讯作者:
    Prasanna, Viktor K.
Bandwidth Efficient Homomorphic Encrypted Matrix Vector Multiplication Accelerator on FPGA
FPGA 上的带宽高效同态加密矩阵向量乘法加速器
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Viktor Prasanna其他文献

Accelerating Deep Neural Network guided MCTS using Adaptive Parallelism
使用自适应并行加速深度神经网络引导的 MCTS
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuan Meng;Qian Wang;Tianxin Zu;Viktor Prasanna
  • 通讯作者:
    Viktor Prasanna
Accelerating GNN Training on CPU+Multi-FPGA Heterogeneous Platform
在 CPU 多 FPGA 异构平台上加速 GNN 训练
PEARL: Enabling Portable, Productive, and High-Performance Deep Reinforcement Learning using Heterogeneous Platforms
PEARL:使用异构平台实现便携式、高效且高性能的深度强化学习

Viktor Prasanna的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Viktor Prasanna', 18)}}的其他基金

IUCRC Phase I University of Southern California: Center for Intelligent Distributed Embedded Applications and Systems (IDEAS)
IUCRC 第一期南加州大学:智能分布式嵌入式应用和系统中心 (IDEAS)
  • 批准号:
    2231662
  • 财政年份:
    2023
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Continuing Grant
Elements: Portable Library for Homomorphic Encrypted Machine Learning on FPGA Accelerated Cloud Cyberinfrastructure
元素:FPGA 加速云网络基础设施上同态加密机器学习的便携式库
  • 批准号:
    2311870
  • 财政年份:
    2023
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
OAC Core: Scalable Graph ML on Distributed Heterogeneous Systems
OAC 核心:分布式异构系统上的可扩展图 ML
  • 批准号:
    2209563
  • 财政年份:
    2022
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
Collaborative Research:PPoSS:Planning: Streamware - A Scalable Framework for Accelerating Streaming Data Science
合作研究:PPoSS:规划:Streamware - 加速流数据科学的可扩展框架
  • 批准号:
    2119816
  • 财政年份:
    2021
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
RAPID: ReCOVER: Accurate Predictions and Resource Allocation for COVID-19 Epidemic Response
RAPID:ReCOVER:COVID-19 流行病应对的准确预测和资源分配
  • 批准号:
    2027007
  • 财政年份:
    2020
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
CNS Core: Small: AccelRITE: Accelerating ReInforcemenT Learning based AI at the Edge Using FPGAs
CNS 核心:小型:AccelRITE:使用 FPGA 在边缘加速基于强化学习的 AI
  • 批准号:
    2009057
  • 财政年份:
    2020
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
OAC Core: Small: Scalable Graph Analytics on Emerging Cloud Infrastructure
OAC 核心:小型:新兴云基础设施上的可扩展图形分析
  • 批准号:
    1911229
  • 财政年份:
    2019
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
FoMR: DeepFetch: Compact Deep Learning based Prefetcher on Configurable Hardware
FoMR:DeepFetch:可配置硬件上基于紧凑深度学习的预取器
  • 批准号:
    1912680
  • 财政年份:
    2019
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
CNS: CSR: Small: Exploiting 3D Memory for Energy-Efficient Memory-Driven Computing
CNS:CSR:小型:利用 3D 内存实现节能内存驱动计算
  • 批准号:
    1643351
  • 财政年份:
    2016
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
EAGER: Safer Connected Communities Through Integrated Data-driven Modeling, Learning, and Optimization
EAGER:通过集成的数据驱动建模、学习和优化打造更安全的互联社区
  • 批准号:
    1637372
  • 财政年份:
    2016
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant

相似国自然基金

基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
  • 批准号:
    82303969
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小胶质细胞调控外侧隔核-腹侧被盖区神经环路介导社交奖赏障碍的机制研究
  • 批准号:
    82304474
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肾去交感神经术促进下丘脑室旁核小胶质细胞M2型极化减轻心衰损伤的机制研究
  • 批准号:
    82370387
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
空间邻近标记技术研究莱茵衣藻蛋白核小管与碳浓缩机制的潜在关系
  • 批准号:
    32300220
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
polyG蛋白聚集体诱导小胶质细胞活化在神经元核内包涵体病中的作用及机制研究
  • 批准号:
    82301603
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
  • 批准号:
    2327427
  • 财政年份:
    2024
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Small: NSF-DST: Understanding Network Structure and Communication for Supporting Information Authenticity
SaTC:核心:小型:NSF-DST:了解支持信息真实性的网络结构和通信
  • 批准号:
    2343387
  • 财政年份:
    2024
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
NSF-NSERC: SaTC: CORE: Small: Managing Risks of AI-generated Code in the Software Supply Chain
NSF-NSERC:SaTC:核心:小型:管理软件供应链中人工智能生成代码的风险
  • 批准号:
    2341206
  • 财政年份:
    2024
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了