Collaborative Research: OAC Core: Robust, Scalable, and Practical Low Rank Approximation

合作研究:OAC 核心:稳健、可扩展且实用的低阶近似

基本信息

  • 批准号:
    2106738
  • 负责人:
  • 金额:
    $ 27.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Nearly all aspects of society are affected by data being produced at a faster rate in recent years. The data from experiments, observations, and simulations are not only in more classical science and engineering domains but also in numerous other areas such as businesses tracking more and more facets of consumer behavior, and social networking capturing vast amounts of information on the relationships between people and their actions and interactions. There is a strong need to distill a set of data into a smaller representation that separates useful information from noise and captures the most important trends, patterns, and underlying relationships.  Such a representation can be used for direct interpretation of hidden patterns or as a means of simplifying other data analytic tasks.  This project addresses these challenges by studying a concept from linear algebra called low rank approximation.  The project develops techniques that faithfully distill the meaningful information within a data set.  The algorithms are also designed to exploit high-performance computers so that analysts can get results more quickly and tackle larger problems.  The overall effort in the project is expected to close the gap between algorithms that can effectively handle very large-scale problems and the data analyst’s ability to convert raw input into meaningful representations and actionable insight.The matrix and tensor low rank approximations being studied in this project serve as foundational tools in numerous science and engineering applications. Imposing constraints on the low rank approximations enables the modeling of many key problems, and designing scalable algorithms enables new applications that reach far beyond classical science and engineering disciplines. In particular, mathematical models with nonnegative data values abound, and imposing nonnegative constraints allows for more accurate and interpretable models. Variants of these constraints can be designed to reflect additional characteristics of real-life data analytics problems. The primary goals of this project are (1) to develop robust techniques for evaluating computed low rank approximations for rank and model determination, (2) to develop scalable parallel algorithms for large and robust low rank approximations on today’s extreme-scale machines, and (3) to provide end users the practical tools required to compute and analyze solutions at scale. Typical data and application scientists use Python or Matlab to iteratively compute, visualize, and evaluate solutions, and they are limited to small data sets with feasible memory and computational requirements. While high-performance algorithms and implementations exist, end users would not leverage these tools if they cannot rely on the robustness and generalizability of the results. This project aims to close this gap, developing an end-to-end system with scalable solutions for all steps of the data analytics workflow.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,社会的几乎所有方面都受到以更快的速度产生的数据的影响,来自实验、观察和模拟的数据不仅存在于更经典的科学和工程领域,而且还存在于许多其他领域,例如企业跟踪和分析。消费者行为的更多方面,以及社交网络捕获有关人与人之间的关系及其行为和交互的大量信息,因此迫切需要将一组数据提炼成更小的表示形式,以将有用信息与噪音分开并捕获最多的信息。重要的趋势、模式和潜在的关系。可用于直接解释隐藏模式或作为简化其他数据分析任务的一种方法,该项目通过研究线性代数中称为低秩近似的概念来解决这些挑战。这些算法还旨在利用高性能计算机,以便分析人员能够更快地获得结果并解决更大的问题。该项目的总体工作预计将缩小能够有效处理超大规模问题的算法之间的差距。数据分析师的转换能力将原始输入转化为有意义的表示和可操作的见解。本项目中研究的矩阵和张量低秩近似可作为众多科学和工程应用中的基础工具,对低秩近似施加约束可以对许多关键问题进行建模,并设计可扩展的模型。算法可以实现远远超出经典科学和工程学科范围的新应用,特别是具有非负数据值的数学模型比比皆是,并且施加非负约束可以设计出更准确和可解释的模型来反映额外的模型。该项目的主要目标是 (1) 开发用于评估计算的低秩近似值以进行排序和模型确定的稳健技术,(2) 开发用于大型且稳健的低秩近似值的可扩展并行算法。 (3) 为最终用户提供大规模计算和分析解决方案所需的实用工具,典型的数据和应用科学家使用 Python 或 Matlab 迭代计算、可视化和评估解决方案。仅限于具有可行内存和计算要求的小数据集。虽然存在高性能算法和实现,但如果最终用户不能依赖结果的稳健性和普遍性,他们就不会利用这些工具。该项目旨在缩小这一差距。为数据分析工作流程的所有步骤开发一个具有可扩展解决方案的端到端系统。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haesun Park其他文献

Unfolding Latent Tree Structures using 4th Order Tensors
使用四阶张量展开潜在树结构
A Dynamic Data Driven Application System for Vehicle Tracking
用于车辆跟踪的动态数据驱动应用系统
  • DOI:
    10.1016/j.procs.2014.05.108
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Fujimoto;Angshuman Guin;M. Hunter;Haesun Park;G. Kanitkar;R. Kannan;Michael Milholen;Sabra A. Neal;P. Pecher
  • 通讯作者:
    P. Pecher
GPS-Based Shortest-Path Routing Scheme in Mobile Ad Hoc Network
移动Ad Hoc网络中基于GPS的最短路径路由方案
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haesun Park;Soo;So;Joo
  • 通讯作者:
    Joo
Albumin grafting on dimethyldichlorosilane-coated glass by gamma-irradiation
通过伽马射线照射将白蛋白接枝到二甲基二氯硅烷涂层玻璃上
  • DOI:
    10.1016/0927-7765(94)80055-3
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Kamath;Haesun Park;H. Shim;Kinam Park
  • 通讯作者:
    Kinam Park
Doubly supervised embedding based on class labels and intrinsic clusters for high-dimensional data visualization
基于类标签和内在簇的双监督嵌入,用于高维数据可视化
  • DOI:
    10.1016/j.neucom.2014.09.064
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Hannah Kim;J. Choo;Chandan K. Reddy;Haesun Park
  • 通讯作者:
    Haesun Park

Haesun Park的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Haesun Park', 18)}}的其他基金

SI2-SSE: Collaborative Research: High Performance Low Rank Approximation for Scalable Data Analytics
SI2-SSE:协作研究:可扩展数据分析的高性能低秩近似
  • 批准号:
    1642410
  • 财政年份:
    2016
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
CAREER: New Representations of Probability Distributions to Improve Machine Learning --- A Unified Kernel Embedding Framework for Distributions
职业:改进机器学习的概率分布的新表示——统一的分布内核嵌入框架
  • 批准号:
    1350983
  • 财政年份:
    2014
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
EAGER: Hierarchical Topic Modeling by Nonnegative Matrix Factorization for Interactive Multi-scale Analysis of Text Data
EAGER:通过非负矩阵分解进行分层主题建模,用于文本数据的交互式多尺度分析
  • 批准号:
    1348152
  • 财政年份:
    2013
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
EAGER: Fast and Accurate Nonnegative Tensor Decompositions: Algorithms and Software
EAGER:快速准确的非负张量分解:算法和软件
  • 批准号:
    0956517
  • 财政年份:
    2009
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
FODAVA-Lead: Dimension Reduction and Data Reduction: Foundations for Visualization
FODAVA-Lead:降维和数据缩减:可视化的基础
  • 批准号:
    0808863
  • 财政年份:
    2008
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
MSPA-MCS: Collaborative Research: Fast Nonnegative Matrix Factorizations: Theory, Algorithms, and Applications
MSPA-MCS:协作研究:快速非负矩阵分解:理论、算法和应用
  • 批准号:
    0732318
  • 财政年份:
    2007
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
SGER: Effective Network Anomaly Detection Based on Adaptive Machine Learning
SGER:基于自适应机器学习的有效网络异常检测
  • 批准号:
    0715342
  • 财政年份:
    2007
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Greedy Approximations with Nonsubmodular Potential Functions
协作研究:具有非子模势函数的贪婪近似
  • 批准号:
    0728812
  • 财政年份:
    2007
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
CompBio: Collaborative Research: Development of Effective Gene Selection Algorithms for Microarray Data Analysis
CompBio:合作研究:开发用于微阵列数据分析的有效基因选择算法
  • 批准号:
    0621889
  • 财政年份:
    2006
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
Special Meeting: Workshop on Future Direction in Numerical Algorithms and Optimization
特别会议:数值算法与优化未来方向研讨会
  • 批准号:
    0633793
  • 财政年份:
    2006
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant

相似国自然基金

离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
  • 批准号:
    52364012
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
  • 批准号:
    32301770
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
  • 批准号:
    52302362
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
  • 批准号:
    72302108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
  • 批准号:
    32300133
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2414474
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2414185
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
  • 批准号:
    2402947
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403313
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了