SGER: Effective Network Anomaly Detection Based on Adaptive Machine Learning
SGER:基于自适应机器学习的有效网络异常检测
基本信息
- 批准号:0715342
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-01 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal #: CNS 07-15342PI(s): Park, Haesun Institution: Georgia Institute of Technology Alanta, GA 30332-0002Title: SGER: Effective Network Anomaly Detection based on Adaptive Machine LearningProject Proposed:This project, developing innovative adaptive machine learning algorithms for detecting network intrusions, especially anomaly detection, aims to increase the detection rate and speed of detection for dynamically changing data sets without recomputing the solutions from scratch. Instead, the existing solutions are utilized and updated with new data. By detecting more data in training without compromising data privacy, the algorithms are designed to increase the detection capability. The work addresses the following challenging aspects of machine learning based methods for network anomaly detection:. Development of Adaptive Machine Learning Algorithms,. Hierarchical Dimension Reduction and Clustering, and. Privacy Preserving Distributed Data Mining for Effective Utilization of Private Intrusion Detection Data Sets.The former, responding to the change of data over time, designs/creates efficient algorithms to delete the influence of old data and incorporate the new data, without recomputing the solution. The second, addressing the fact that typically data sets are intrinsically unbalanced when the problem is considered as a binary problem, generalizes further the cluster preserving dimension reduction methods to reflect the hierarchical cluster structure in dimension reduction. The latter, responding to data privacy, designs machine learning based anomaly detection algorithms by integrating locally generated results into one integrated solution without revealing the critical information in each local data set, thereby preserving privacy.Broader Impacts: The research produces methods that are likely to have great impact on a broad range of applications in very high-dimensional spaces. Their adaptability allows significant reduction in the computational complexity substantially improving the possibility of detailed study of data which has been prohibitively expensive. Involving an HBCU institution in the area, this female faculty PI leads an effort to engage more women and minority students.
提案#:CNS 07-15342PI(S):帕克,Haesun机构:佐治亚州技术研究所Alanta,GA 30332-0002TITLE:SGER:SGER:SGER:基于自适应机器学习项目的有效网络异常检测提议:该项目,该项目,为开发创新的机器学习量的检测,特别是针对检测机器的估计量,尤其是检测到的目标,特别是检测的范围。检测动态更改数据集的情况,而无需从头开始重新计算解决方案。相反,现有的解决方案被使用并使用新数据更新。通过在不损害数据隐私的情况下检测培训中的更多数据,该算法旨在提高检测能力。该工作涉及基于机器学习的网络异常检测方法的以下具有挑战性的方面:。自适应机器学习算法的开发。层次降低和聚类,以及。保留分布式数据挖掘以有效利用私人入侵检测数据集。前者响应随着时间的推移而响应数据的变化,设计/创建有效的算法,以删除旧数据的影响并结合新数据,而无需重新计算解决方案。第二个问题是,当问题被认为是二进制问题时,通常数据集通常在本质上是不平衡的,因此进一步概括了群集保留尺寸缩小方法,以反映降低维度的层次结构结构。后者响应数据隐私,通过将本地生成的结果集成到一个集成的解决方案中,而无需揭示每个本地数据集中的关键信息,从而确保了隐私的影响:研究产生的方法可能会对在很高的高度范围的应用中产生很大的影响。它们的适应性可显着降低计算复杂性,从而大大提高了对数据非常昂贵的数据的详细研究的可能性。这位女教师PI涉及该地区的HBCU机构,努力吸引更多的妇女和少数族裔学生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Haesun Park其他文献
Unfolding Latent Tree Structures using 4th Order Tensors
使用四阶张量展开潜在树结构
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Mariya Ishteva;Haesun Park;Le Song - 通讯作者:
Le Song
A Dynamic Data Driven Application System for Vehicle Tracking
用于车辆跟踪的动态数据驱动应用系统
- DOI:
10.1016/j.procs.2014.05.108 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
R. Fujimoto;Angshuman Guin;M. Hunter;Haesun Park;G. Kanitkar;R. Kannan;Michael Milholen;Sabra A. Neal;P. Pecher - 通讯作者:
P. Pecher
GPS-Based Shortest-Path Routing Scheme in Mobile Ad Hoc Network
移动Ad Hoc网络中基于GPS的最短路径路由方案
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Haesun Park;Soo;So;Joo - 通讯作者:
Joo
Doubly supervised embedding based on class labels and intrinsic clusters for high-dimensional data visualization
基于类标签和内在簇的双监督嵌入,用于高维数据可视化
- DOI:
10.1016/j.neucom.2014.09.064 - 发表时间:
2015 - 期刊:
- 影响因子:6
- 作者:
Hannah Kim;J. Choo;Chandan K. Reddy;Haesun Park - 通讯作者:
Haesun Park
Two-Dimensional Concept Vector Machines Based on an Ionic Interaction Model
基于离子相互作用模型的二维概念向量机
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Hyunsoo Kim;Haesun Park - 通讯作者:
Haesun Park
Haesun Park的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Haesun Park', 18)}}的其他基金
Collaborative Research: OAC Core: Robust, Scalable, and Practical Low Rank Approximation
合作研究:OAC 核心:稳健、可扩展且实用的低阶近似
- 批准号:
2106738 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
SI2-SSE: Collaborative Research: High Performance Low Rank Approximation for Scalable Data Analytics
SI2-SSE:协作研究:可扩展数据分析的高性能低秩近似
- 批准号:
1642410 - 财政年份:2016
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
CAREER: New Representations of Probability Distributions to Improve Machine Learning --- A Unified Kernel Embedding Framework for Distributions
职业:改进机器学习的概率分布的新表示——统一的分布内核嵌入框架
- 批准号:
1350983 - 财政年份:2014
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
EAGER: Hierarchical Topic Modeling by Nonnegative Matrix Factorization for Interactive Multi-scale Analysis of Text Data
EAGER:通过非负矩阵分解进行分层主题建模,用于文本数据的交互式多尺度分析
- 批准号:
1348152 - 财政年份:2013
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
EAGER: Fast and Accurate Nonnegative Tensor Decompositions: Algorithms and Software
EAGER:快速准确的非负张量分解:算法和软件
- 批准号:
0956517 - 财政年份:2009
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
FODAVA-Lead: Dimension Reduction and Data Reduction: Foundations for Visualization
FODAVA-Lead:降维和数据缩减:可视化的基础
- 批准号:
0808863 - 财政年份:2008
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
MSPA-MCS: Collaborative Research: Fast Nonnegative Matrix Factorizations: Theory, Algorithms, and Applications
MSPA-MCS:协作研究:快速非负矩阵分解:理论、算法和应用
- 批准号:
0732318 - 财政年份:2007
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Greedy Approximations with Nonsubmodular Potential Functions
协作研究:具有非子模势函数的贪婪近似
- 批准号:
0728812 - 财政年份:2007
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
CompBio: Collaborative Research: Development of Effective Gene Selection Algorithms for Microarray Data Analysis
CompBio:合作研究:开发用于微阵列数据分析的有效基因选择算法
- 批准号:
0621889 - 财政年份:2006
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Special Meeting: Workshop on Future Direction in Numerical Algorithms and Optimization
特别会议:数值算法与优化未来方向研讨会
- 批准号:
0633793 - 财政年份:2006
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
相似国自然基金
能量有效的云资源管理策略及博弈均衡问题的研究
- 批准号:61872311
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
超密集无线异构网络中能量有效的网络协作通信研究
- 批准号:61601192
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
复杂环境下能量有效的无线传感器网络时间同步精度研究
- 批准号:61561020
- 批准年份:2015
- 资助金额:41.0 万元
- 项目类别:地区科学基金项目
基于“活性成分群-生物代谢靶点-疾病网络” 研究参附注射液“精而有效”的制剂特征
- 批准号:81503266
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
认知无线网中能量有效的双向中继传输方案设计与性能研究
- 批准号:61401146
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Bioactive Effective Surface For Transport Network (BEST Network)
传输网络的生物活性有效表面(BEST网络)
- 批准号:
EP/X03576X/1 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Research Grant
SensorGROW - an intuitive, cost effective and scalable precision growing platform, powered by a network of unified agri-sensor nodes
SensorGROW - 直观、经济高效且可扩展的精准种植平台,由统一农业传感器节点网络提供支持
- 批准号:
10095990 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Collaborative R&D
NODE - Network Opportunities for Developing Equitable and Effective Evaluation at HSIs
NODE - 在 HSI 开展公平有效评估的网络机会
- 批准号:
2311385 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Cooperative Agreement
EEG Biomarkers Derived from Dynamical Network Models Enable Rapid Paths to Accurate Diagnosis and Effective Treatment of Epilepsy
源自动态网络模型的脑电图生物标志物为癫痫的准确诊断和有效治疗提供了快速途径
- 批准号:
10665213 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Investigation and systematization of effective co-creation network structure of various players for local environmental conservation
当地环境保护各参与者有效共创网络结构的调查和系统化
- 批准号:
23K19144 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Grant-in-Aid for Research Activity Start-up