Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction

合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施

基本信息

  • 批准号:
    2403312
  • 负责人:
  • 金额:
    $ 29.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-10-01 至 2027-09-30
  • 项目状态:
    未结题

项目摘要

Graph Neural Networks (GNNs) have extended Deep Neural Networks’ success from independent data points to relational data points, such as observations collected on-site from environmental sensors (e.g., humidity, temperature, PM2.5, etc.) widely distributed in different spatial locations. While most existing works focus on proof-of-concept on relatively small, well-curated data, with offline settings, real-world scientific research, and applications need more capable GNN models, which can effectively learn from large-scale, real-time, geographically distributed (geo-distributed) and diversely different (heterogeneous) data. This project aims to chart a radically new cyberinfrastructure solution for training large-spatial GNNs to fill this gap. The success of this project will provide a cyberinfrastructure that overcomes the fundamental computational and communication bottlenecks for a broad range of domain science applications that rely on massive spatiotemporal prediction. The proposed algorithms and systems will be ideal for cultivating a deeper understanding of designing large machine-learning systems at a geo-distributed scale, teaching and training students and peers, and providing graduate and undergraduate students with new courses, research, and internship opportunities. This project aims to develop a comprehensive set of graph construction and partitioning methods, distributed learning algorithms, and cyberinfrastructure designs to support large-scale GNNs for real-world spatiotemporal data in geospatial scientific research and applications. The project will address significant research challenges, including (1) formulating spatiotemporal prediction within a geographically inspired graph deep learning framework, (2) enabling highly accurate, efficient, and cost-effective spatiotemporal prediction tasks across vast, geographically dispersed datasets, and (3) integrating spatial correlation, spatial heterogeneity, spatial computing parallelism, and geographic communication efficiency. The research is organized around several key research themes: (1) Creating a universal framework for constructing graphs from spatiotemporal data, determining spatial relationships, and filling in missing node attributes. (2) Developing a centralized spatiotemporal graph learning infrastructure that leverages multiple edge micro-datacenters for collaborative GNN model learning. (3) Establishing a decentralized spatiotemporal graph learning infrastructure that supports decentralized geographical multitask learning to address spatial heterogeneity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图神经网络 (GNN) 将深度神经网络的成功从独立数据点扩展到了关系数据点,例如从广泛分布在不同地区的环境传感器(例如湿度、温度、PM2.5 等)现场收集的观测结果虽然大多数现有的工作都集中在相对较小、精心策划的数据上进行概念验证,并且具有离线设置,但现实世界的科学研究和应用需要更强大的 GNN 模型,这些模型可以有效地从大规模、该项目旨在制定一种全新的网络基础设施解决方案,用于训练大型空间 GNN,以填补这一空白。克服了依赖于大规模时空预测的广泛领域科学应用的基本计算和通信瓶颈,所提出的算法和系统将非常适合培养对大型设计的更深入理解。该项目旨在开发一套全面的分布式图构建和分区方法,为学生和同行提供教学和培训,并为研究生和本科生提供新的课程、研究和实习机会。该项目将解决重大研究挑战,包括(1)在受地理启发的图深度学习中制定时空预测。框架,(2)在巨大的、地理上分散的数据集上实现高精度、高效且具有成本效益的时空预测任务,以及(3)集成空间相关性、空间异质性、空间计算并行性和地理通信效率。几个关键研究主题:(1)创建一个通用框架,用于从时空数据构建图、确定空间关系并填充缺失的节点属性(2)开发利用多个边的集中式时空图学习基础设施。 (3) 建立去中心化的时空图学习基础设施,支持去中心化的地理多任务学习,以解决空间异质性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势进行评估,认为值得支持。以及更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liang Zhao其他文献

Performance and power consumption tradeoff in multimedia cloud
多媒体云中的性能和功耗权衡
  • DOI:
    10.1007/s11042-018-6833-4
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Xianwei Li;Liang Zhao;Guolong Chen;Wei Zhou;Haiyang Zhang;Zhenggao Pan;Qu;e Dong;Jun Ling
  • 通讯作者:
    Jun Ling
Modeling and Optimization of a Steam System in a Chemical Plant Containing Multiple Direct Drive Steam Turbines
多台直驱汽轮机化工厂蒸汽系统建模与优化
FLT3L and granulocyte macrophage colony-stimulating factor enhance the anti-tumor and immune effects of an HPV16 E6/E7 vaccine
FLT3L和粒细胞巨噬细胞集落刺激因子增强HPV16 E6/E7疫苗的抗肿瘤和免疫效果
  • DOI:
    10.18632/aging.102494
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhenzhen Ding;Hua Zhu;Laiming Mo;Xiangyun Li;Rui Xu;Tian Li;Liang Zhao;Yi Ren;Yunsheng Xu;Rongying Ou
  • 通讯作者:
    Rongying Ou
Machine Learning-based Time-slot Time-varying Filtering for Mandarin Tone Processing
基于机器学习的时隙时变滤波用于普通话声调处理
  • DOI:
    10.1088/1742-6596/2356/1/012034
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yannuo Wen;Yue Wang;Ran Zhang;Jiaxuan Li;Liang Zhao;J. Healy
  • 通讯作者:
    J. Healy
Effects of a highly lipophilic substituent on the environmental stability of naphthalene tetracarboxylic diimide-based n-channel thin-film transistors
高亲脂取代基对萘四甲酰二亚胺基n沟道薄膜晶体管环境稳定性的影响
  • DOI:
    10.1039/c6tc04323b
  • 发表时间:
    2017-01
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Liang Zhao;Dongwei Zhang;Hong Meng
  • 通讯作者:
    Hong Meng

Liang Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liang Zhao', 18)}}的其他基金

CAREER: Uncovering Solar Wind Composition, Acceleration, and Origin through Observations, Modeling, and Machine Learning Methods
职业:通过观测、建模和机器学习方法揭示太阳风的成分、加速度和起源
  • 批准号:
    2237435
  • 财政年份:
    2023
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Continuing Grant
Travel: NSF Student Travel Support for the 2023 IEEE International Conference on Data Mining (IEEE ICDM 2023)
旅行:2023 年 IEEE 国际数据挖掘会议 (IEEE ICDM 2023) 的 NSF 学生旅行支持
  • 批准号:
    2324784
  • 财政年份:
    2023
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
SHINE: Understanding the Physical Connection of the in-situ Properties and Coronal Origins of the Solar Wind with a Novel Artificial Intelligence Investigation
SHINE:通过新颖的人工智能研究了解太阳风的原位特性和日冕起源的物理联系
  • 批准号:
    2229138
  • 财政年份:
    2022
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Continuing Grant
III: Small: Graph Generative Deep Learning for Protein Structure Prediction
III:小:用于蛋白质结构预测的图生成深度学习
  • 批准号:
    2110926
  • 财政年份:
    2020
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
OAC Core: SMALL: DeepJIMU: Model-Parallelism Infrastructure for Large-scale Deep Learning by Gradient-Free Optimization
OAC 核心:小型:DeepJIMU:通过无梯度优化实现大规模深度学习的模型并行基础设施
  • 批准号:
    2007976
  • 财政年份:
    2020
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
CAREER: Spatial Network Deep Generative Modeling, Transformation, and Interpretation
职业:空间网络深度生成建模、转换和解释
  • 批准号:
    2113350
  • 财政年份:
    2020
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Continuing Grant
CRII: III: Interpretable Models for Spatio-Temporal Event Forecasting using Social Sensors
CRII:III:使用社交传感器进行时空事件预测的可解释模型
  • 批准号:
    2103745
  • 财政年份:
    2020
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
CAREER: Spatial Network Deep Generative Modeling, Transformation, and Interpretation
职业:空间网络深度生成建模、转换和解释
  • 批准号:
    1942594
  • 财政年份:
    2020
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Continuing Grant
OAC Core: SMALL: DeepJIMU: Model-Parallelism Infrastructure for Large-scale Deep Learning by Gradient-Free Optimization
OAC 核心:小型:DeepJIMU:通过无梯度优化实现大规模深度学习的模型并行基础设施
  • 批准号:
    2106446
  • 财政年份:
    2020
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
III: Small: Deep Generative Models for Temporal Graph Generation and Interpretation
III:小:用于时间图生成和解释的深度生成模型
  • 批准号:
    2007716
  • 财政年份:
    2020
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant

相似国自然基金

基于FRET受体上升时间的单分子高精度测量方法研究
  • 批准号:
    22304184
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
脂质多聚复合物mRNA纳米疫苗的构筑及抗肿瘤治疗研究
  • 批准号:
    52373161
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
屏障突破型原位线粒体基因递送系统用于治疗Leber遗传性视神经病变的研究
  • 批准号:
    82304416
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
细胞硬度介导口腔鳞癌细胞与CD8+T细胞间力学对话调控免疫杀伤的机制研究
  • 批准号:
    82373255
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
乙酸钙不动杆菌上调DUOX2激活PERK/ATF4内质网应激在炎症性肠病中的作用机制研究
  • 批准号:
    82300623
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2414474
  • 财政年份:
    2024
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
  • 批准号:
    2402947
  • 财政年份:
    2024
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403313
  • 财政年份:
    2024
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2414185
  • 财政年份:
    2024
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
  • 批准号:
    2402946
  • 财政年份:
    2024
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了