CRII: III: Interpretable Models for Spatio-Temporal Event Forecasting using Social Sensors

CRII:III:使用社交传感器进行时空事件预测的可解释模型

基本信息

  • 批准号:
    2103745
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Significant events that occur at certain times and in specific locations, such as disease out-breaks and crime incidents, have tremendous impacts on our society. This strongly motivates the need to anticipate event occurrences in advance in order to reduce the potential social upheaval and damage caused. For example, for traffic congestion predictions based on social network reporting and traffic sensors, these methods would inform the authorities where the future congestion will occur and why certain ongoing traffic incident and congestion hot spots will worsen the problem on specific roads. In recent years, such model interpretability has attracted increasing attention as machine learning is beginning to be applied to ever more practical applications. As a domain with significant impact on society, the interpretability of spatio-temporal event forecasting models is particularly important in order to earn the trust of practitioners and become widely adopted in their everyday workflow. However, like conventional machine learning models, models for social event forecasting still primarily focus on prediction accuracy and are rapidly becoming too sophisticated and obscure to be easily understood by human operators. There is thus an urgent need to fill the increasing gap between data scientists and practitioners. To address it, this project focuses on developing a novel spatio-temporal social event forecasting framework that can jointly optimize the model accuracy and interpretability, and automatically illustrate the explanatory process of prediction generation. To address challenges like spatial dependency and high-dimensional large data, the project aims at exploring the conditional independence and spatial topology to boost the sparsity of spatial dependence patterns. The project will then move on to exploit the hierarchical conjunction lattice of primitive data features to enforce the conciseness and sparsity of expository high-level representations of the data. To solve the formulated optimization problem for jointly maximizing accuracy and interpretability, this project also involves research on the corresponding optimization methods with rigorous theoretical analysis on efficiency and optimality. Finally, strategies for evaluating model interpretability in social event forecasting are systematically investigated. The success of this project will shed a light on the generic research in interpretable data mining and machine learning. The methods and tools developed in this project will help fill the gaps between data scientists and domain-specific forecasting experts. Finally, this project will provide valuable resources to support courses with new topics, datasets, techniques, and software, and gives more research opportunities for underrepresented students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在特定时间和特定地点发生的重大事件,例如疾病爆发和犯罪事件,对我们的社会产生巨大影响。这强烈要求提前预测事件发生,以减少潜在的社会动荡和造成的损害。例如,对于基于社交网络报告和交通传感器的交通拥堵预测,这些方法将告知当局未来拥堵将在哪里发生,以及为什么某些正在进行的交通事件和拥堵热点会使特定道路上的问题恶化。近年来,随着机器学习开始应用于越来越多的实际应用,这种模型的可解释性引起了越来越多的关注。作为一个对社会具有重大影响的领域,时空事件预测模型的可解释性对于赢得从业者的信任并在他们的日常工作流程中广泛采用尤为重要。然而,与传统的机器学习模型一样,社交事件预测模型仍然主要关注预测准确性,并且正迅速变得过于复杂和晦涩,以至于人类操作员无法轻松理解。因此,迫切需要填补数据科学家和从业者之间日益扩大的差距。为了解决这个问题,该项目重点开发一种新颖的时空社会事件预测框架,该框架可以共同优化模型的准确性和可解释性,并自动说明预测生成的解释过程。为了解决空间依赖性和高维大数据等挑战,该项目旨在探索条件独立性和空间拓扑,以提高空间依赖性模式的稀疏性。然后,该项目将继续利用原始数据特征的分层联合格,以加强数据的说明性高级表示的简洁性和稀疏性。为了解决所制定的优化问题以共同最大化准确性和可解释性,该项目还涉及对相应优化方法的研究,并对效率和优化进行严格的理论分析。最后,系统地研究了评估社会事件预测中模型可解释性的策略。该项目的成功将为可解释数据挖掘和机器学习的通用研究带来启发。该项目开发的方法和工具将有助于填补数据科学家和特定领域预测专家之间的空白。最后,该项目将提供宝贵的资源来支持新主题、数据集、技术和软件的课程,并为代表性不足的学生提供更多研究机会。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力评估进行评估,认为值得支持。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Taking the pulse of COVID-19: a spatiotemporal perspective
  • DOI:
    10.1080/17538947.2020.1809723
  • 发表时间:
    2020-08-25
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Yang, Chaowei;Sha, Dexuan;Ding, Andrew
  • 通讯作者:
    Ding, Andrew
Deep Multi-attributed Graph Translation with Node-Edge Co-Evolution
  • DOI:
    10.1109/icdm.2019.00035
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaojie Guo;Liang Zhao;Cameron Nowzari;S. Rafatirad;H. Homayoun;Sai Manoj Pudukotai Dinakarrao
  • 通讯作者:
    Xiaojie Guo;Liang Zhao;Cameron Nowzari;S. Rafatirad;H. Homayoun;Sai Manoj Pudukotai Dinakarrao
Online Decision Trees with Fairness
  • DOI:
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenbin Zhang;Liang Zhao
  • 通讯作者:
    Wenbin Zhang;Liang Zhao
Deep graph transformation for attributed, directed, and signed networks
  • DOI:
    10.1007/s10115-021-01553-9
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Xiaojie Guo;Liang Zhao;H. Homayoun;Sai Manoj Pudukotai Dinakarrao
  • 通讯作者:
    Xiaojie Guo;Liang Zhao;H. Homayoun;Sai Manoj Pudukotai Dinakarrao
Spatio-Temporal Event Forecasting Using Incremental Multi-Source Feature Learning
  • DOI:
    10.1145/3464976
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liang Zhao;Yuyang Gao;Jieping Ye;Feng Chen;Yanfang Ye;Chang-Tien Lu;Naren Ramakrishnan
  • 通讯作者:
    Liang Zhao;Yuyang Gao;Jieping Ye;Feng Chen;Yanfang Ye;Chang-Tien Lu;Naren Ramakrishnan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liang Zhao其他文献

Performance and power consumption tradeoff in multimedia cloud
多媒体云中的性能和功耗权衡
  • DOI:
    10.1007/s11042-018-6833-4
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Xianwei Li;Liang Zhao;Guolong Chen;Wei Zhou;Haiyang Zhang;Zhenggao Pan;Qu;e Dong;Jun Ling
  • 通讯作者:
    Jun Ling
Modeling and Optimization of a Steam System in a Chemical Plant Containing Multiple Direct Drive Steam Turbines
多台直驱汽轮机化工厂蒸汽系统建模与优化
FLT3L and granulocyte macrophage colony-stimulating factor enhance the anti-tumor and immune effects of an HPV16 E6/E7 vaccine
FLT3L和粒细胞巨噬细胞集落刺激因子增强HPV16 E6/E7疫苗的抗肿瘤和免疫效果
  • DOI:
    10.18632/aging.102494
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhenzhen Ding;Hua Zhu;Laiming Mo;Xiangyun Li;Rui Xu;Tian Li;Liang Zhao;Yi Ren;Yunsheng Xu;Rongying Ou
  • 通讯作者:
    Rongying Ou
Machine Learning-based Time-slot Time-varying Filtering for Mandarin Tone Processing
基于机器学习的时隙时变滤波用于普通话声调处理
  • DOI:
    10.1088/1742-6596/2356/1/012034
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yannuo Wen;Yue Wang;Ran Zhang;Jiaxuan Li;Liang Zhao;J. Healy
  • 通讯作者:
    J. Healy
Effects of a highly lipophilic substituent on the environmental stability of naphthalene tetracarboxylic diimide-based n-channel thin-film transistors
高亲脂取代基对萘四甲酰二亚胺基n沟道薄膜晶体管环境稳定性的影响
  • DOI:
    10.1039/c6tc04323b
  • 发表时间:
    2017-01
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Liang Zhao;Dongwei Zhang;Hong Meng
  • 通讯作者:
    Hong Meng

Liang Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liang Zhao', 18)}}的其他基金

Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CAREER: Uncovering Solar Wind Composition, Acceleration, and Origin through Observations, Modeling, and Machine Learning Methods
职业:通过观测、建模和机器学习方法揭示太阳风的成分、加速度和起源
  • 批准号:
    2237435
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
Travel: NSF Student Travel Support for the 2023 IEEE International Conference on Data Mining (IEEE ICDM 2023)
旅行:2023 年 IEEE 国际数据挖掘会议 (IEEE ICDM 2023) 的 NSF 学生旅行支持
  • 批准号:
    2324784
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SHINE: Understanding the Physical Connection of the in-situ Properties and Coronal Origins of the Solar Wind with a Novel Artificial Intelligence Investigation
SHINE:通过新颖的人工智能研究了解太阳风的原位特性和日冕起源的物理联系
  • 批准号:
    2229138
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
III: Small: Graph Generative Deep Learning for Protein Structure Prediction
III:小:用于蛋白质结构预测的图生成深度学习
  • 批准号:
    2110926
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
OAC Core: SMALL: DeepJIMU: Model-Parallelism Infrastructure for Large-scale Deep Learning by Gradient-Free Optimization
OAC 核心:小型:DeepJIMU:通过无梯度优化实现大规模深度学习的模型并行基础设施
  • 批准号:
    2007976
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CAREER: Spatial Network Deep Generative Modeling, Transformation, and Interpretation
职业:空间网络深度生成建模、转换和解释
  • 批准号:
    2113350
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
OAC Core: SMALL: DeepJIMU: Model-Parallelism Infrastructure for Large-scale Deep Learning by Gradient-Free Optimization
OAC 核心:小型:DeepJIMU:通过无梯度优化实现大规模深度学习的模型并行基础设施
  • 批准号:
    2106446
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
III: Small: Deep Generative Models for Temporal Graph Generation and Interpretation
III:小:用于时间图生成和解释的深度生成模型
  • 批准号:
    2007716
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CAREER: Spatial Network Deep Generative Modeling, Transformation, and Interpretation
职业:空间网络深度生成建模、转换和解释
  • 批准号:
    1942594
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

摇摆桥梁三维动力学行为及地震响应规律研究
  • 批准号:
    52308494
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于瞬态成像响应的非同步相移轮廓术三维测量方法研究
  • 批准号:
    62375078
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
高精度OFDR分布式螺旋多芯光纤三维形状传感技术
  • 批准号:
    62375178
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
构件复杂背景下的实景三维古建筑物细节多层次语义提取方法研究
  • 批准号:
    62306107
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

III:Small: Interpretable Deep Generative Models for Drug Development
III:Small:可解释的药物开发深度生成模型
  • 批准号:
    2133650
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Towards Scalable and Interpretable Graph Neural Networks
III:媒介:协作研究:迈向可扩展和可解释的图神经网络
  • 批准号:
    1955285
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: III: Multiresolution Tensor Learning for Scalable and Interpretable Spatiotemporal Analysis
CRII:III:用于可扩展和可解释时空分析的多分辨率张量学习
  • 批准号:
    2037745
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Towards Scalable and Interpretable Graph Neural Networks
III:媒介:协作研究:迈向可扩展和可解释的图神经网络
  • 批准号:
    1955189
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Towards Scalable and Interpretable Graph Neural Networks
III:媒介:协作研究:迈向可扩展和可解释的图神经网络
  • 批准号:
    1955851
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了